Information on the epidemiology of C. difficile infection (CDI) in South-East Asian countries is limited, as is data on possible animal reservoirs of C. difficile in the region. We investigated the prevalence and molecular epidemiology of C. difficile in piglets and the piggery environment in Thailand and Malaysia. Piglet rectal swabs (n = 224) and piggery environmental specimens (n = 23) were collected between 2015 and 2016 from 11 farms located in Thailand and Malaysia. All specimens were tested for the presence of C. difficile with toxigenic culture. PCR assays were performed on isolates to determine the ribotype (RT), and the presence of toxin genes. Whole genome sequencing was used on a subset of isolates to determine the evolutionary relatedness of RT038 (the most prevalent RT identified) common to pigs and humans from Thailand and Indonesia. C. difficile was recovered from 35% (58/165) and 92% (54/59) of the piglets, and 89% (8/9) and 93% (13/14) of the environmental specimens from Thailand and Malaysia, respectively. All strains from Thailand, and 30 strains from Malaysia (23 piglet and 7 environmental isolates) were non-toxigenic. To our knowledge, this is the first and only report with a complete lack of toxigenic C. difficile among piglets, a feature which could have a protective effect on the host. The most common strain belonged to RT038 (ST48), accounting for 88% (51/58) of piglet and 78% (7/9) of environmental isolates from Thailand, and all 30 isolates tested from Malaysia. Piglet RT038 isolates from Thailand and Malaysia differed by only 18 core-genome single nucleotide variants (cgSNVs) and both were, on average, 30 cgSNVs different from the human strains from Thailand and Indonesia, indicating a common ancestor in the last two decades.
Group B Streptococcus (GBS) is a predominant causative pathogen of neonatal meningitis that is associated with a high rate of mortality and morbidity. The establishment of antenatal screening and intrapartum chemoprophylaxis has led to a significant reduction in the incidence rate of invasive GBS disease in developed countries. However, these strategies are not routinely practiced in most developing countries. To ensure good recovery of infants affected with GBS, a prompt diagnostic strategy and appropriate therapy are essential. We highlight here the case of a preterm male infant diagnosed with early-onset of GBS meningitis diagnosed by using polymerase chain reaction (PCR) method on the cerebrospinal fluid (CSF) of the infant. Initially the pathogen was not isolated in both blood and CSF cultures as sampling was performed after the administration of antibiotics. Hence, PCR was a crucial diagnostic test in facilitating the detection of the pathogen in CSF. We believe that PCR is a potentially fast and precise diagnostic method for infection in a newborn.
This study is based on the premise of investigating antibacterial activity through a novel conjugate of silver nanoparticles (AgNPs) and antimicrobial peptides (AMPs) in line with a green synthesis approach by developing antimicrobial-coated implants to prevent bacterial resistance. The AMPs were obtained from Bellamya Bengalensis (BB), a freshwater snail, to prepare the nanocomposite conjugate, e.g., AgNPs@BB extract, by making use of UV-Visible spectroscopy. The antimicrobial assessment of AgNPs@BB extract conjugate was performed using the Resazurin Microtiter Assay Method (REMA), followed by the use of three biocompatible implant materials (titanium alloys, Ti 6AL-4V stainless steel 316L, and polyethylene). Finally, the coating was analyzed under confocal microscopy. The results revealed a significant reduction of biofilm formation on the surfaces of implants coated with conjugate (AgNPs@BB extract) in comparison to uncoated implants. For the MTT assay, no significant changes were recorded for the cells grown on the AgNPs/AMP++ sample in high concentrations. Staphylococcus epidermidis, however, showed more prominent growth on all implants in comparison to Staphylococcus aureus. It is evident from the results that Staphylococcus epidermidis is more susceptible to AgNPs@BB extract, while the minimum inhibitory concentration (MIC) value of AgNPs@BB extract conjugates and biosynthesized AgNPs was also on the higher side. This study indicates that AgNPs@BB extract carries antibacterial activity, and concludes that an excessive concentration of AgNPs@BB extract may affect the improved biocompatibility. This study recommends using robust, retentive, and antimicrobial coatings of AgNPs@BB extract for implantable biocompatible materials in accordance with the novel strategy of biomaterial applications.
The biosynthesis of silver nanoparticles and the antibacterial activities has provided enormous data on populations, geographical areas, and experiments with bio silver nanoparticles' antibacterial operation. Several peer-reviewed publications have discussed various aspects of this subject field over the last generation. However, there is an absence of a detailed and structured framework that can represent the research domain on this topic. This paper attempts to evaluate current articles mainly on the biosynthesis of nanoparticles or antibacterial activities utilizing the scientific methodology of big data analytics. A comprehensive study was done using multiple databases-Medline, Scopus, and Web of Sciences through PRISMA (i.e., Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The keywords used included 'biosynthesis silver nano particles' OR 'silver nanoparticles' OR 'biosynthesis' AND 'antibacterial behavior' OR 'anti-microbial opposition' AND 'systematic analysis,' by using MeSH (Medical Subject Headings) terms, Boolean operator's parenthesis, or truncations as required. Since their effectiveness is dependent on particle size or initial concentration, it necessitates more research. Understanding the field of silver nanoparticle biosynthesis and antibacterial activity in Gulf areas and most Asian countries also necessitates its use of human-generated data. Furthermore, the need for this work has been highlighted by the lack of predictive modeling in this field and a need to combine specific domain expertise. Studies eligible for such a review were determined by certain inclusion and exclusion criteria. This study contributes to the existence of theoretical and analytical studies in this domain. After testing as per inclusion criteria, seven in vitro studies were selected out of 28 studies. Findings reveal that silver nanoparticles have different degrees of antimicrobial activity based on numerous factors. Limitations of the study include studies with low to moderate risks of bias and antimicrobial effects of silver nanoparticles. The study also reveals the possible use of silver nanoparticles as antibacterial irrigants using various methods, including a qualitative evaluation of knowledge and a comprehensive collection and interpretation of scientific studies.