Displaying all 2 publications

Abstract:
Sort:
  1. Jorquera R, González C, Clausen PTLC, Petersen B, Holmes DS
    Database (Oxford), 2021 01 28;2021.
    PMID: 33507271 DOI: 10.1093/database/baab002
    Single-exon coding sequences (CDSs), also known as 'single-exon genes' (SEGs), are defined as nuclear, protein-coding genes that lack introns in their CDSs. They have been studied not only to determine their origin and evolution but also because their expression has been linked to several types of human cancers and neurological/developmental disorders, and many exhibit tissue-specific transcription. We developed SinEx DB that houses DNA and protein sequence information of SEGs from 10 mammalian genomes including human. SinEx DB includes their functional predictions (KOG (euKaryotic Orthologous Groups)) and the relative distribution of these functions within species. Here, we report SinEx 2.0, a major update of SinEx DB that includes information of the occurrence, distribution and functional prediction of SEGs from 60 completely sequenced eukaryotic genomes, representing animals, fungi, protists and plants. The information is stored in a relational database built with MySQL Server 5.7, and the complete dataset of SEG sequences and their GO (Gene Ontology) functional assignations are available for downloading. SinEx DB 2.0 was built with a novel pipeline that helps disambiguate single-exon isoforms from SEGs. SinEx DB 2.0 is the largest available database for SEGs and provides a rich source of information for advancing our understanding of the evolution, function of SEGs and their associations with disorders including cancers and neurological and developmental diseases. Database URL: http://v2.sinex.cl/.
  2. Jorquera R, González C, Clausen P, Petersen B, Holmes DS
    Database (Oxford), 2018 01 01;2018:1-6.
    PMID: 30239665 DOI: 10.1093/database/bay089
    Efficient extraction of knowledge from biological data requires the development of structured vocabularies to unambiguously define biological terms. This paper proposes descriptions and definitions to disambiguate the term 'single-exon gene'. Eukaryotic Single-Exon Genes (SEGs) have been defined as genes that do not have introns in their protein coding sequences. They have been studied not only to determine their origin and evolution but also because their expression has been linked to several types of human cancer and neurological/developmental disorders and many exhibit tissue-specific transcription. Unfortunately, the term 'SEGs' is rife with ambiguity, leading to biological misinterpretations. In the classic definition, no distinction is made between SEGs that harbor introns in their untranslated regions (UTRs) versus those without. This distinction is important to make because the presence of introns in UTRs affects transcriptional regulation and post-transcriptional processing of the mRNA. In addition, recent whole-transcriptome shotgun sequencing has led to the discovery of many examples of single-exon mRNAs that arise from alternative splicing of multi-exon genes, these single-exon isoforms are being confused with SEGs despite their clearly different origin. The increasing expansion of RNA-seq datasets makes it imperative to distinguish the different SEG types before annotation errors become indelibly propagated in biological databases. This paper develops a structured vocabulary for their disambiguation, allowing a major reassessment of their evolutionary trajectories, regulation, RNA processing and transport, and provides the opportunity to improve the detection of gene associations with disorders including cancers, neurological and developmental diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links