Displaying all 5 publications

Abstract:
Sort:
  1. Nkem BM, Halimoon N, Yusoff FM, Johari WLW
    J Environ Health Sci Eng, 2022 Dec;20(2):729-747.
    PMID: 36406595 DOI: 10.1007/s40201-022-00812-3
    A consortium of bacteria capable of decomposing oily hydrocarbons was isolated from tarballs on the beaches of Terengganu, Malaysia, and classified as Pseudomonas stutzeri, Cellulosimicrobium cellulans, Acinetobacter baumannii and Pseudomonas balearica. The Taguchi design was used to optimize the biodegradation of diesel using these bacteria as a consortium. The highest biodegradation of diesel-oil in the experimental tests was 93.6%, and the individual n-alkanes decomposed 87.6-97.6% over 30 days. Optimal settings were inoculum size of 2.5 mL (1.248 OD600nm); 12% (v/v) the initial diesel-oil in a minimal salt medium of pH 7.0, 30.0 gL-1 NaCl and 2.0 gL-1 NH4NO3 concentration, incubated at 42 °C temperature and 150 rpm agitation speed. Parameters significantly improved diesel-oil removal by consortium as shown by the model determination coefficient (R2 = 90.89%; P 
  2. Abubakar A, Mustafa MB, Johari WLW, Zulkifli SZ, Ismail A, Mohamat-Yusuff FB
    Mar Pollut Bull, 2015 Dec 15;101(1):280-283.
    PMID: 26434791 DOI: 10.1016/j.marpolbul.2015.09.041
    A possible tributyltin (TBT)-degrading bacterium isolated from contaminated surface sediment was successfully identified as Klebsiella sp. FIRD 2. It was found to be the best isolate capable of resisting TBT at a concentration of 1000 μg L(-1). This was a concentration above the reported contaminated level at the sampling station, 790 μg L(-1). Further studies revealed that the isolate was Gram negative and resisted TBT concentrations of up to 1500 μg L(-1) in a Minimal Salt Broth without the addition of any carbon source within the first 48 h of incubation. It is expected that additional work could be conducted to check the degradation activity of this new isolate and possibly improve the degradation capacity in order to contribute to finding a safe and sustainable remediation solution of TBT contamination.
  3. Nkem BM, Halimoon N, Yusoff FM, Johari WLW, Zakaria MP, Medipally SR, et al.
    Mar Pollut Bull, 2016 Jun 15;107(1):261-268.
    PMID: 27085593 DOI: 10.1016/j.marpolbul.2016.03.060
    In this study, we isolated two indigenous hydrocarbon-degrading bacteria from tarball found in Rhu Sepuluh beach, Terengganu, Malaysia. These bacteria were identified based on their physiological characteristic and 16S rRNA gene sequence analysis, and they showed 99% similarity with Cellulosimicrobium cellulans DSM 43879 and Acinetobacter baumannii ATCC 19606 respectively. Their hydrocarbon-degrading capabilities were tested using diesel-oil as sole carbon source. Results analysed using GC-MS, showed diesel-oil alkanes were degraded an average 64.4% by C. cellulans and 58.1% by A. baumannii with medium optical density reaching 0.967 (C. cellulans) and 1.515 (A. baumannii) in minimal salt media at 32°C for 10days. Individual diesel-oil alkanes were degraded between 10%-95.4% by C. cellulans and 0.2%-95.9% by A. baumannii. Both strains utilized diesel-oil for growth. The study suggests both strains are part of indigenous hydrocarbon-degrading bacteria in tarball with potential for bioremediation of oil-polluted marine environment.
  4. Salleh SNAS, Hanapiah NAM, Johari WLW, Ahmad H, Osman NH
    Saudi J Biol Sci, 2021 Dec;28(12):6705-6710.
    PMID: 34866969 DOI: 10.1016/j.sjbs.2021.07.049
    Propolis is a resinous substance collected by stingless bees containing bioactive compounds which exert various biological properties. The present study focused on the evaluation of chemical profiles produced by three Indo-Malayan stingless bee propolis extracted using water. Fresh propolis was collected from the same area and ecosystem conditions in Selangor, Malaysia, namely Tetrigona apicalis, Tetrigona binghami, and Heterotrigona fimbriata. The bioactive compounds and chemical composition of propolis extracts were then analyzed using gas chromatography-mass spectrometry (GC-MS). Results showed that propolis from the three different stingless bee species consisted of major groups such as sugar (31.4%), carboxylic acid (17.1%), terpenoid (14.3%), sugar alcohol (11.4%), hydrocarbon (5.7%), aldehyde (5.7%) amino acid (2.9%) and other constituents (11.4%). Heterotrigona fimbriata displayed the highest amount for both total phenolics (13.21 mg/mL) and flavonoids (34.53 mg/mL) compared to other propolis extracts. There is also no significant difference detected between all samples since p ≤ 0.05. In conclusion, this study shows that Malaysian stingless bee propolis contain bioactive components that have great potential to be used for their therapeutic and medicinal benefits. However, more investigations and analysis of stingless bee propolis need to be carried out in order to enhance the understanding and applications of propolis in the future.
  5. Habib S, Ahmad SA, Johari WLW, Shukor MYA, Alias SA, Khalil KA, et al.
    Microb Cell Fact, 2018 Mar 17;17(1):44.
    PMID: 29549881 DOI: 10.1186/s12934-018-0889-8
    BACKGROUND: Biodegradation of hydrocarbons in Antarctic soil has been reported to be achieved through the utilisation of indigenous cold-adapted microorganisms. Although numerous bacteria isolated from hydrocarbon-contaminated sites in Antarctica were able to demonstrate promising outcomes in utilising hydrocarbon components as their energy source, reports on the utilisation of hydrocarbons by strains isolated from pristine Antarctic soil are scarce. In the present work, two psychrotolerant strains isolated from Antarctic pristine soil with the competency to utilise diesel fuel as the sole carbon source were identified and optimised through conventional and response surface method.

    RESULTS: Two potent hydrocarbon-degraders (ADL15 and ADL36) were identified via partial 16S rRNA gene sequence analysis, and revealed to be closely related to the genus Pseudomonas and Rhodococcus sp., respectively. Factors affecting diesel degradation such as temperature, hydrocarbon concentration, pH and salt tolerance were studied. Although strain ADL36 was able to withstand a higher concentration of diesel than strain ADL15, both strains showed similar optimal condition for the cell's growth at pH 7.0 and 1.0% (w/v) NaCl at the conventional 'one-factor-at-a-time' level. Both strains were observed to be psychrotrophs with optimal temperatures of 20 °C. Qualitative and quantitative analysis were performed with a gas chromatograph equipped with a flame ionisation detector to measure the reduction of n-alkane components in diesel. In the pre-screening medium, strain ADL36 showed 83.75% of n-dodecane mineralisation while the reduction of n-dodecane by strain ADL15 was merely at 22.39%. The optimised condition for n-dodecane mineralisation predicted through response surface methodology enhanced the reduction of n-dodecane to 99.89 and 38.32% for strain ADL36 and strain ADL15, respectively.

    CONCLUSIONS: Strain ADL36 proves to be a better candidate for bioaugmentation operations on sites contaminated with aliphatic hydrocarbons especially in the Antarctic and other cold regions. The results obtained throughout strongly supports the use of RSM for medium optimisation.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links