Displaying all 16 publications

Abstract:
Sort:
  1. Mudali D, Jeevanandam J, Danquah MK
    Crit Rev Biotechnol, 2020 Nov;40(7):951-977.
    PMID: 32633615 DOI: 10.1080/07388551.2020.1789062
    Drug-induced transformations in disease characteristics at the cellular and molecular level offers the opportunity to predict and evaluate the efficacy of pharmaceutical ingredients whilst enabling the optimal design of new and improved drugs with enhanced pharmacokinetics and pharmacodynamics. Machine learning is a promising in-silico tool used to simulate cells with specific disease properties and to determine their response toward drug uptake. Differences in the properties of normal and infected cells, including biophysical, biochemical and physiological characteristics, plays a key role in developing fundamental cellular probing platforms for machine learning applications. Cellular features can be extracted periodically from both the drug treated, infected, and normal cells via image segmentations in order to probe dynamic differences in cell behavior. Cellular segmentation can be evaluated to reflect the levels of drug effect on a distinct cell or group of cells via probability scoring. This article provides an account for the use of machine learning methods to probe differences in the biophysical, biochemical and physiological characteristics of infected cells in response to pharmacokinetics uptake of drug ingredients for application in cancer, diabetes and neurodegenerative disease therapies.
  2. Jeevanandam J, Chan YS, Danquah MK
    Biochimie, 2016 Sep-Oct;128-129:99-112.
    PMID: 27436182 DOI: 10.1016/j.biochi.2016.07.008
    Nano-formulations of medicinal drugs have attracted the interest of many researchers for drug delivery applications. These nano-formulations enhance the properties of conventional drugs and are specific to the targeted delivery site. Dendrimers, polymeric nanoparticles, liposomes, nano-emulsions and micelles are some of the nano-formulations that are gaining prominence in pharmaceutical industry for enhanced drug formulation. Wide varieties of synthesis methods are available for the preparation of nano-formulations to deliver drugs in biological system. The choice of synthesis methods depend on the size and shape of particulate formulation, biochemical properties of drug, and the targeted site. This article discusses recent developments in nano-formulation and the progressive impact on pharmaceutical research and industries. Additionally, process challenges relating to consistent generation of nano-formulations for drug delivery are discussed.
  3. Jeevanandam J, Pal K, Danquah MK
    Biochimie, 2019 Feb;157:38-47.
    PMID: 30408502 DOI: 10.1016/j.biochi.2018.11.001
    Viruses are considered as natural nanomaterials as they are in the size range of 20-500 nm with a genetical material either DNA or RNA, which is surrounded by a protein coat capsid. Recently, the field of virus nanotechnology is gaining significant attention from researchers. Attention is given to the utilization of viruses as nanomaterials for medical, biotechnology and energy applications. Removal of genetic material from the viral capsid creates empty capsid for drug incorporation and coating the capsid protein crystals with antibodies, enzymes or aptamers will enhance their targeted drug deliver efficiency. Studies reported that these virus-like nanoparticles have been used in delivering drugs for cancer. It is also used in imaging and sensory applications for various diseases. However, there is reservation among researchers to utilize virus-like nanoparticles in targeted delivery of genes in gene therapy, as there is a possibility of using virus-like nanoparticles for targeted gene delivery. In addition, other biomedical applications that are explored using virus-like nanoparticles and the probable mechanism of delivering genes.
  4. Jeevanandam J, Chan YS, Danquah MK
    3 Biotech, 2020 Nov;10(11):489.
    PMID: 33123456 DOI: 10.1007/s13205-020-02480-2
    The present study investigates the cytotoxicity of hexagonal MgO nanoparticles synthesized via Amaranthus tricolor leaf extract and spherical MgO nanoparticles synthesized via Amaranthus blitum and Andrographis paniculata leaf extracts. In vitro cytotoxicity analysis showed that the hexagonal MgO nanoparticles synthesized from A. tricolor extract demonstrated the least toxicity to both diabetic and non-diabetic cells at 600 μl/ml dosage. The viability of the diabetic cells (3T3-L1) after incubation with varying dosages of MgO nanoparticles was observed to be 55.3%. The viability of normal VERO cells was 86.6% and this stabilized to about 75% even after exposure to MgO nanoparticles dosage of up to 1000 μl/ml. Colorimetric glucose assay revealed that the A. tricolor extract synthesized MgO nanoparticles resulted in ~ 28% insulin resistance reversal. A reduction in the expression of GLUT4 protein at 54 KDa after MgO nanopaSrticles incubation with diabetic cells was observed via western blot analysis to confirm insulin reversal ability. Fluorescence microscopic analysis with propidium iodide and acridine orange dyes showed the release of reactive oxygen species as a possible mechanism of the cytotoxic effect of MgO nanoparticles. It was inferred that the synergistic effect of the phytochemicals and MgO nanoparticles played a significant role in delivering enhanced insulin resistance reversal capability in adipose cells.
  5. Jeevanandam J, Chan YS, Danquah MK, Law MC
    Appl Biochem Biotechnol, 2020 Apr;190(4):1385-1410.
    PMID: 31776944 DOI: 10.1007/s12010-019-03166-z
    Insulin resistance is one of the major factors that leads to type 2 diabetes. Although insulin therapies have been shown to overcome insulin resistance, overweight and hypoglycemia are still observed in most cases. The disadvantages of insulin therapies have driven the interest in developing novel curative agents with enhanced insulin resistance reversibility. Magnesium deficiency has also been recognized as a common problem which leads to insulin resistance in both type 1 and 2 diabetes. Oxide nanoparticles demonstrate highly tunable physicochemical properties that can be exploited by engineers to develop unique oxide nanoparticles for tailored applications. Magnesium supplements for diabetic cells have been reported to increase the insulin resistance reversibility. Hence, it is hypothesized that magnesium oxide (MgO) nanoparticles could be molecularly engineered to offer enhanced therapeutic efficacy in reversing insulin resistance. In the present work, morphologically different MgO nanoparticles were synthesized and evaluated for biophysical characteristics, biocompatibility, cytotoxicity, and insulin resistance reversibility. MTT assay revealed that hexagonally shaped MgO nanoparticles are less toxic to 3T3-L1 adipose cells (diabetic) compared with spherically and rod-shaped MgO nanoparticles. MTT assays using VERO cells (normal, non-diabetic) showed that 400 μg/ml of hexagonal MgO nanoparticles were less toxic to both diabetic and non-diabetic cells. DNS glucose assay and western blot showed that hexagonally shaped MgO nanoparticles had reversed 29.5% of insulin resistance whilst fluorescence microscopy studies indicated that the insulin resistance reversal is due to the activation of intracellular enzymes. The probable mechanism for MgO nanoparticles to induce cytotoxic effect and insulin resistance reversal is discussed.
  6. Tan KX, Pan S, Jeevanandam J, Danquah MK
    Int J Pharm, 2019 Mar 10;558:413-425.
    PMID: 30660748 DOI: 10.1016/j.ijpharm.2019.01.023
    Cardiovascular ailments are the foremost trigger of death in the world today, including myocardial infarction and ischemic heart diseases. To date, extraordinary measures have been prescribed, from the perspectives of both conventional medical therapies and surgeries, to enforce cardiac cell regeneration post cardiac traumas, albeit with limited long-term success. The prospects of successful heart transplants are also grim, considering exorbitant costs and unavailability of suitable donors in most cases. From the perspective of cardiac revascularization, use of nanoparticles and nanoparticle mediated targeted drug delivery have garnered substantial attention, attributing to both active and passive heart targeting, with enhanced target specificity and sensitivity. This review focuses on this aspect, while outlining the progress in targeted delivery of nanomedicines in the prognosis and subsequent therapy of cardiovascular disorders, and recapitulating the benefits and intrinsic challenges associated with the incorporation of nanoparticles. This article categorically provides an overview of nanoparticle-mediated targeted delivery systems and their implications in handling cardiovascular diseases, including their intrinsic benefits and encountered procedural trials and challenges. Additionally, the solicitations of aptamers in targeted drug delivery with identical objectives, are presented. This includes a detailed appraisal on various aptamer-navigated nanoparticle targeted delivery platforms in the diagnosis and treatment of cardiovascular maladies. Despite a few impending challenges, subject to additional investigations, both nanoparticles as well as aptamers show a high degree of promise, and pose as the next generation of drug delivery vehicles, in targeted cardiovascular therapy.
  7. Jeevanandam J, Tan KX, Danquah MK, Guo H, Turgeson A
    Biotechnol J, 2020 Mar;15(3):e1900368.
    PMID: 31840436 DOI: 10.1002/biot.201900368
    Theranostics cover emerging technologies for cell biomarking for disease diagnosis and targeted introduction of drug ingredients to specific malignant sites. Theranostics development has become a significant biomedical research endeavor for effective diagnosis and treatment of diseases, especially cancer. An efficient biomarking and targeted delivery strategy for theranostic applications requires effective molecular coupling of binding ligands with high affinities to specific receptors on the cancer cell surface. Bioaffinity offers a unique mechanism to bind specific target and receptor molecules from a range of non-targets. The binding efficacy depends on the specificity of the affinity ligand toward the target molecule even at low concentrations. Aptamers are fragments of genetic materials, peptides, or oligonucleotides which possess enhanced specificity in targeting desired cell surface receptor molecules. Aptamer-target binding results from several inter-molecular interactions including hydrogen bond formation, aromatic stacking of flat moieties, hydrophobic interaction, electrostatic, and van der Waals interactions. Advancements in Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assay has created the opportunity to artificially generate aptamers that specifically bind to desired cancer and tumor surface receptors with high affinities. This article discusses the potential application of molecular dynamics (MD) simulation to advance aptamer-mediated receptor targeting in targeted cancer therapy. MD simulation offers real-time analysis of the molecular drivers of the aptamer-receptor binding and generate optimal receptor binding conditions for theranostic applications. The article also provides an overview of different cancer types with focus on receptor biomarking and targeted treatment approaches, conventional molecular probes, and aptamers that have been explored for cancer cells targeting.
  8. Balu S, Sundaradoss MV, Andra S, Jeevanandam J
    Beilstein J Nanotechnol, 2020;11:285-295.
    PMID: 32117667 DOI: 10.3762/bjnano.11.21
    Cuttlefish bones are an inexpensive source of calcium carbonate, which are produced in large amounts by the marine food industry, leading to environmental contamination and waste. The nontoxicity, worldwide availability and low production cost of cuttlefish bone products makes them an excellent calcium carbonate precursor for the fabrication of hydroxyapatite. In the present study, a novel oil-bath-mediated precipitation method was introduced for the synthesis of hydroxyapatite (Hap) nanorods using cuttlefish bone powder as a precursor (CB-Hap NRs). The obtained CB-Hap NRs were investigated using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) techniques to evaluate their physicochemical properties. The crystallite size (20.86 nm) obtained from XRD data and the elemental analysis (Ca/P molar ratio was estimated to be 1.6) showed that the Hap NRs are similar to that of natural human bone (≈1.67). Moreover, the FTIR data confirmed the presence of phosphate as a functional group and the TGA data revealed the thermal stability of Hap NRs. In addition, the antibacterial study showed a significant inhibitory effect of CB-Hap NRs against S. aureus (zone of inhibition - 14.5 ± 0.5 mm) and E. coli (13 ± 0.5 mm), whereas the blood compatibility test showed that the CB-Hap NRs exhibited a concentration-mediated hemolytic effect. These biogenic CB-Hap NRs with improved physicochemical properties, blood compatibility and antibacterial efficacy could be highly beneficial for orthopedic applications in the future.
  9. Siaw YM, Jeevanandam J, Hii YS, Chan YS
    Naunyn Schmiedebergs Arch Pharmacol, 2020 Dec;393(12):2253-2264.
    PMID: 32632566 DOI: 10.1007/s00210-020-01934-x
    In recent times, magnesium oxide (MgO) nanoparticles are proven to be an excellent antibacterial agent which inhibits the growth of bacteria by generating reactive oxygen species (ROS). Release of ROS by nanoparticles will damage the cell membrane of bacteria and leads to the leakage of bacterial internal components and cell death. However, chemically synthesized MgO nanoparticles may possess toxic functional groups which may inhibit healthy human cells along with bacterial cells. Thus, the aim of the present study is to synthesize MgO nanoparticles using leaf extracts of Amaranthus tricolor and photo-irradiation of visible light as a catalyst, without addition of any chemicals. Optimization was performed using Box-Behnken design (BBD) to obtain the optimum condition required to synthesize smallest nanoparticles. The parameters such as time of reaction, the concentration of precursor, and light intensity have been identified to affect the size of biosynthesized nanoparticles and was optimized. The experiment performed with optimized conditions such as 0.001 M concentration of magnesium acetate as precursor, 5 cm distance of light (intensity), and 15 min of reaction time (light exposure) has led to the formation of 74.6 nm sized MgO nanoparticles. The antibacterial activities of MgO nanoparticles formed via photo-irradiation and conventional biosynthesis approach were investigated and compared. The lethal dosage of E. coli for photo-irradiated and conventional biosynthesis MgO nanoparticles was 0.6 ml and 0.4 ml, respectively. Likewise, the lethal dosage of S. aureus for both biosynthesis approaches was found to be 0.4 ml. The results revealed that the antibacterial activity of MgO nanoparticles from both biosynthesis approaches was similar. Thus, photo-irradiated MgO nanoparticles were beneficial over heat-mediated conventional method due to the reduced synthesis duration.
  10. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK
    Beilstein J Nanotechnol, 2018;9:1050-1074.
    PMID: 29719757 DOI: 10.3762/bjnano.9.98
    Nanomaterials (NMs) have gained prominence in technological advancements due to their tunable physical, chemical and biological properties with enhanced performance over their bulk counterparts. NMs are categorized depending on their size, composition, shape, and origin. The ability to predict the unique properties of NMs increases the value of each classification. Due to increased growth of production of NMs and their industrial applications, issues relating to toxicity are inevitable. The aim of this review is to compare synthetic (engineered) and naturally occurring nanoparticles (NPs) and nanostructured materials (NSMs) to identify their nanoscale properties and to define the specific knowledge gaps related to the risk assessment of NPs and NSMs in the environment. The review presents an overview of the history and classifications of NMs and gives an overview of the various sources of NPs and NSMs, from natural to synthetic, and their toxic effects towards mammalian cells and tissue. Additionally, the types of toxic reactions associated with NPs and NSMs and the regulations implemented by different countries to reduce the associated risks are also discussed.
  11. Chan YW, Acquah C, Obeng EM, Dullah EC, Jeevanandam J, Ongkudon CM
    Biochimie, 2019 Feb;157:204-212.
    PMID: 30513369 DOI: 10.1016/j.biochi.2018.11.019
    Biocarriers are pivotal in enhancing the reusability of biocatalyst that would otherwise be less economical for industrial application. Ever since the induction of enzymatic technology, varied materials have been assessed for their biocompatibility with enzymes of distinct functionalities. Herein, cellulase was immobilized onto polymethacrylate particles (ICP) as the biocarrier grafted with ethylenediamine (EDA) and glutaraldehyde (GA). Carboxymethyl cellulose (CMC) was used as a model substrate for activity assay. Enzyme immobilization loading was determined by quantifying the dry weight differential of ICP (pre-& post-immobilization). Cellulase was successfully demonstrated to be anchored upon ICP and validated by FTIR spectra analysis. The optimal condition for cellulase immobilization was determined to be pH 6 at 20 °C. The maximum CMCase activity was achieved at pH 5 and 50 °C. Residual activity of ∼50% was retained after three iterations and dipped to ∼18% on following cycle. Also, ICP displayed superior pH adaptability as compared to free cellulase. The specific activity of ICP was 65.14 ± 1.11% relative to similar amount of free cellulase.
  12. Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, et al.
    Nanoscale, 2022 Feb 17;14(7):2534-2571.
    PMID: 35133391 DOI: 10.1039/d1nr08144f
    Green synthesis approaches are gaining significance as promising routes for the sustainable preparation of nanoparticles, offering reduced toxicity towards living organisms and the environment. Nanomaterials produced by green synthesis approaches can offer additional benefits, including reduced energy inputs and lower production costs than traditional synthesis, which bodes well for commercial-scale production. The biomolecules and phytochemicals extracted from microbes and plants, respectively, are active compounds that function as reducing and stabilizing agents for the green synthesis of nanoparticles. Microorganisms, such as bacteria, yeasts, fungi, and algae, have been used in nanomaterials' biological synthesis for some time. Furthermore, the use of plants or plant extracts for metal and metal-based hybrid nanoparticle synthesis represents a novel green synthesis approach that has attracted significant research interest. This review discusses various biosynthesis approaches via microbes and plants for the green preparation of metal and metal oxide nanoparticles and provides insights into the molecular aspects of the synthesis mechanisms and biomedical applications. The use of agriculture waste as a potential bioresource for nanoparticle synthesis and biomedical applications of biosynthesized nanoparticles is also discussed.
  13. Jeevanandam J, Danquah MK, Debnath S, Meka VS, Chan YS
    Curr Pharm Biotechnol, 2015;16(10):853-70.
    PMID: 26212563 DOI: 10.2174/1389201016666150727120618
    Diabetes mellitus has been a threat to humans for many years. Amongst the different diabetes types, type 2 diabetes mellitus is the most common, and this is due to drastic changes in human lifestyle such as lack of exercise, stressful life and so on. There are a large number of conventional treatment methods available for type 2 diabetes mellitus. However, most of these methods are curative and are only applicable when the patient is highly symptomatic. Effective treatment strategies should be geared towards interfering with cellular and bio molecular mechanisms associated with the development and sustenance of the disease. In recent years, research into the medical potential of nanoparticles has been a major endeavor within the pharmaceutical industries. Nanoparticles display unique and tuneable biophysical characteristics which are determined by their shape and size. Nanoparticles have been used to manifest the properties of drugs, and as carriers for drug and vaccine delivery. Notwithstanding, there are further opportunities for nanoparticles to augment the treatment of a wide range of life threatening diseases that are yet to be explored. This review article seeks to highlight the application of potential nano-formulations in the treatment of type 2 diabetes mellitus. In addition, the activity of nanomedicine supplements in reversing insulin resistance is also discussed.
  14. Jeevanandam J, Krishnan S, Hii YS, Pan S, Chan YS, Acquah C, et al.
    J Nanostructure Chem, 2022;12(5):809-831.
    PMID: 35070207 DOI: 10.1007/s40097-021-00465-y
    Numerous viral infections are common among humans, and some can lead to death. Even though conventional antiviral agents are beneficial in eliminating viral infections, they may lead to side effects or physiological toxicity. Silver nanoparticles and nanocomposites have been demonstrated to possess inhibitory properties against several pathogenic microbes, including archaea, bacteria, fungi, algae, and viruses. Its pronounced antimicrobial activity against various microbe-mediated diseases potentiates its use in combating viral infections. Notably, the appropriated selection of the synthesis method to fabricate silver nanoparticles is a major factor for consideration as it directly impacts antiviral efficacy, level of toxicity, scalability, and environmental sustainability. Thus, this article presents and discusses various synthesis approaches to produce silver nanoparticles and nanocomposites, providing technological insights into selecting approaches to generate antiviral silver-based nanoparticles. The antiviral mechanism of various formulations of silver nanoparticles and the evaluation of its propensity to combat specific viral infections as a potential antiviral agent are also discussed.
  15. Obayomi KS, Lau SY, Danquah MK, Zhang J, Chiong T, Takeo M, et al.
    Materials (Basel), 2023 Jun 14;16(12).
    PMID: 37374562 DOI: 10.3390/ma16124379
    In recent years, the global population has increased significantly, resulting in elevated levels of pollution in waterways. Organic pollutants are a major source of water pollution in various parts of the world, with phenolic compounds being the most common hazardous pollutant. These compounds are released from industrial effluents, such as palm oil milling effluent (POME), and cause several environmental issues. Adsorption is known to be an efficient method for mitigating water contaminants, with the ability to eliminate phenolic contaminants even at low concentrations. Carbon-based materials have been reported to be effective composite adsorbents for phenol removal due to their excellent surface features and impressive sorption capability. However, the development of novel sorbents with higher specific sorption capabilities and faster contaminant removal rates is necessary. Graphene possesses exceptionally attractive chemical, thermal, mechanical, and optical properties, including higher chemical stability, thermal conductivity, current density, optical transmittance, and surface area. The unique features of graphene and its derivatives have gained significant attention in the application of sorbents for water decontamination. Recently, the emergence of graphene-based adsorbents with large surface areas and active surfaces has been proposed as a potential alternative to conventional sorbents. The aim of this article is to discuss novel synthesis approaches for producing graphene-based nanomaterials for the adsorptive uptake of organic pollutants from water, with a special focus on phenols associated with POME. Furthermore, this article explores adsorptive properties, experimental parameters for nanomaterial synthesis, isotherms and kinetic models, mechanisms of nanomaterial formation, and the ability of graphene-based materials as adsorbents of specific contaminants.
  16. Anboo S, Lau SY, Kansedo J, Yap PS, Hadibarata T, Jeevanandam J, et al.
    Biotechnol Bioeng, 2022 Oct;119(10):2609-2638.
    PMID: 35851660 DOI: 10.1002/bit.28185
    Over the past decade, nanotechnology has been developed and employed across various entities. Among the numerous nanostructured material types, enzyme-incorporated nanomaterials have shown great potential in various fields, as an alternative to biologically derived as well as synthetically developed hybrid structures. The mechanism of incorporating enzyme onto a nanostructure depends on several factors including the method of immobilization, type of nanomaterial, as well as operational and environmental conditions. The prospects of enzyme-incorporated nanomaterials have shown promising results across various applications, such as biocatalysts, biosensors, drug therapy, and wastewater treatment. This is due to their excellent ability to exhibit chemical and physical properties such as high surface-to-volume ratio, recovery and/or reusability rates, sensitivity, response scale, and stable catalytic activity across wide operating conditions. In this review, the evolution of enzyme-incorporated nanomaterials along with their impact on our society due to its state-of-the-art properties, and its significance across different industrial applications are discussed. In addition, the weakness and future prospects of enzyme-incorporated nanomaterials were also discussed to guide scientists for futuristic research and development in this field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links