Displaying all 3 publications

Abstract:
Sort:
  1. Abd El-Aal AAA, Jayakumar FA, Reginald K
    Drug Discov Today, 2023 Nov;28(11):103764.
    PMID: 37689179 DOI: 10.1016/j.drudis.2023.103764
    Cryptides are a subfamily of bioactive peptides embedded latently in their parent proteins and have multiple biological functions. Cationic cryptides could be used as modern drugs in both infectious diseases and cancers because their mechanism of action is less likely to be affected by genetic mutations in the treated cells, therefore addressing a current unmet need in these two areas of medicine. In this review, we present the current understanding of cryptides, methods to mine them sustainably using available online databases and prediction tools, with a particular focus on their antimicrobial and anticancer potential, and their potential applicability in a clinical setting.
  2. Abd El-Aal AAA, Jayakumar FA, Lahiri C, Tan KO, Reginald K
    Sci Rep, 2023 Sep 06;13(1):14673.
    PMID: 37673929 DOI: 10.1038/s41598-023-41581-9
    Cryptides are a subfamily of bioactive peptides that exist in all living organisms. They are latently encrypted in their parent sequences and exhibit a wide range of biological activities when decrypted via in vivo or in vitro proteases. Cationic cryptides tend to be drawn to the negatively charged membranes of microbial and cancer cells, causing cell death through various mechanisms. This makes them promising candidates for alternative antimicrobial and anti-cancer therapies, as their mechanism of action is independent of gene mutations. In the current study, we employed an in silico approach to identify novel cationic cryptides with potential antimicrobial and anti-cancer activities in atypical and systematic strategy by reanalysis of a publicly available RNA-seq dataset of Pacific white shrimp (Penaus vannamei) in response to bacterial infection. Out of 12 cryptides identified, five were selected based on their net charges and potential for cell penetration. Following chemical synthesis, the cryptides were assayed in vitro to test for their biological activities. All five cryptides demonstrated a wide range of selective activity against the tested microbial and cancer cells, their anti-biofilm activities against mature biofilms, and their ability to interact with Gram-positive and negative bacterial membranes. Our research provides a framework for a comprehensive analysis of transcriptomes in various organisms to uncover novel bioactive cationic cryptides. This represents a significant step forward in combating the crisis of multi-drug-resistant microbial and cancer cells, as these cryptides neither induce mutations nor are influenced by mutations in the cells they target.
  3. Simon SE, Lim HS, Jayakumar FA, Tan EW, Tan KO
    PMID: 35082905 DOI: 10.1155/2022/7548191
    α-Mangostin, one of the major constituents of Garcinia mangostana, has been reported to possess several biological activities, including antioxidant, anti-inflammatory, antibacterial, and cytotoxic activities associated with the inhibition of cell proliferation and activation of apoptosis. However, the cellular signaling pathway mediated by α-mangostin has not been firmly established. To investigate the cellular activities of α-mangostin, human cancer cells, MCF-7 and MCF-7-CR cells, were treated with α-mangostin to measure the cellular responses, including cytotoxicity, protein-protein interaction, and protein expression. Cancer cells stably expressed Myc-BCL-XL and HA-MOAP-1 were also included in the studies to delineate the cell signaling events mediated by α-mangostin. Our results showed that the apoptosis signaling mediated by α-mangostin involves the upregulation of endogenous MOAP-1, which interacts with α-mangostin activated BAX (act-BAX) while downregulating the expression of BCL-XL. Moreover, α-mangostin was found to induce BAX oligomerization, the release of mitochondrial cytochrome C, and activation of caspase in MCF-7 cells. In overexpression studies, MCF-7 cells and spheroids stably expressed HA-MOAP-1 and Myc-BCL-XL exhibited differential chemosensitivity toward α-mangostin in which the stable clones expressing HA-MOAP-1 and MYC-BCL-XL were chemosensitive and chemoresistant to the apoptosis signaling events mediated by α-mangostin, respectively, when compared to untreated cells. Together, the data suggest that the cytotoxicity of α-mangostin involves the activation of MOAP-1 tumor suppressor and its interaction with act-BAX, leading to mitochondria dysfunction and cell death.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links