Acacia mangium, a fast growing tree is widely planted in Malaysia. Converting Acacia wood into nanocellulose could create new value added products for forest-based industry. Nanocrystalline cellulose (NCC) was prepared from Acacia mangium wood pulp via 64wt% sulfuric acid hydrolysis. Prior to acid hydrolysis, Acacia mangium was subjected to pulping followed by bleaching in order to remove non-cellulosic fragments. Acid hydrolysis was carried out on bleached pulp to produce the needle-like NCC with 79% crystallinity and aspect ratio of 26. The resulting NCC was mixed with PVA as a reinforcement material. Incorporation of 2% NCC improved the tensile of the NCC-PVA film by 30%.
Wood-based industry is one of the main drivers of economic growth in Malaysia. Forest being the source of various lignocellulosic materials has many untapped potentials that could be exploited to produce sustainable and biodegradable nanosized material that possesses very interesting features for use in wood-based industry itself or across many different application fields. Wood-based products sector could also utilise various readily available nanomaterials to enhance the performance of existing products or to create new value added products from the forest. This review highlights recent developments in nanotechnology application in the wood-based products industry.
Nanocellulose is a versatile cellulosic nanomaterial that can be used in many application areas. Applying different preparation strategies leads to different types of nanocellulose. In this study, nanocrystalline cellulose (NCC) and nanofibrillated cellulose (NFC) were prepared from lesser known wood species, viz., Macaranga gigantea, using sulfuric acid hydrolysis and enzymatic pretreatment with ultrafine grinding approaches, respectively. The respective nanocellulose was characterized by means of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), atomic force microscopy (AFM). It was then converted into a thin film to assess its performance which includes tensile test, transparency, air permeance, water vapor transmission rate (WVTR), and water vapor permeability (WVP) properties. NCC and NFC produced from the raw material of Macaranga had average widths of 6.38 ± 3.92 nm and 13.17 ± 12.71 nm, respectively. Peaks in FTIR spectra showed the conversion of Macaranga wood to nanocellulose by the presence of cellulose fingerprint as well as absence of lignin and hemicellulose after alkaline treatment. The successful conversion was also supported by XRD analysis which displayed the increased crystallinity value from 54% to 70%. TGA decomposition pattern at 200-490 °C revealed the thermal stability of the samples. The thin film produced from nanocelluloses had WVTR values of 4.58 and 12.14 g/(day·m2) for NFC and NCC, respectively, comparable to those of films from polyester and oriented polypropylene. Nanocellulose-based thin film has the potential to be used as sustainable and biodegradable packaging.
A new cellulose nanocrystal-reduced graphene oxide (CNC-rGO) nanocomposite was successfully used for mediatorless electrochemical sensing of methyl paraben (MP). Fourier-transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM) studies confirmed the formation of the CNC-rGO nanocomposite. Cyclic voltammetry (CV) studies of the nanocomposite showed quasi-reversible redox behavior. Differential pulse voltammetry (DPV) was employed for the sensor optimization. Under optimized conditions, the sensor demonstrated a linear calibration curve in the range of 2 × 10-4-9 × 10-4 M with a limit of detection (LOD) of 1 × 10-4 M. The MP sensor showed good reproducibility with a relative standard deviation (RSD) of about 8.20%. The sensor also exhibited good stability and repeatability toward MP determinations. Analysis of MP in cream samples showed recovery percentages between 83% and 106%. Advantages of this sensor are the possibility for the determination of higher concentrations of MP when compared with most other reported sensors for MP. The CNC-rGO nanocomposite-based sensor also depicted good reproducibility and reusability compared to the rGO-based sensor. Furthermore, the CNC-rGO nanocomposite sensor showed good selectivity toward MP with little interference from easily oxidizable species such as ascorbic acid.
Nanofibrillated cellulose (NFC) has found extensive potential and existing utilizations across various industries. Nonetheless, a notable constraint of NFC lies in its inherent hydrophilic nature, which restricts its suitability for non-aqueous application. This study aims at synthesising hydrophobic NFC through a two-step surface modification by reacting NFC with tannic acid and amine group. The study also investigated the effect of using various alkylamines on the properties of modified NFC. The hydrophobic NFC was characterized using various analytical techniques namely Thermogravimetric Analysis (TGA), X-Ray Diffraction analysis (XRD), Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR), elemental analysis, and contact angle measurements. The present study also looked into the possible use of modified NFC as a pharmaceutical excipient for the delivery of water insoluble curcumin. The analysis of curcumin binding onto the modified NFC was conducted using UV-Visible spectrophotometry. The findings from the study indicated that the modified NFC effectively bound a substantial quantity of curcumin (80 % - 87 %) and the binding varied for samples of different degree of substitution.
Inspired by nature, cellulose extracted from plant wastes has been explored, due to its great potential as an alternative for synthetic fiber and filler that contributes to structural performance. The drive of this study was to extract, treat, and evaluate the characteristics of rice straw (RS) (Oryza sativa L.) cellulose as a biodegradable reinforcement to be utilized in polymer base materials. Two routes of extraction and treatment were performed via the pulping (Route 1) and chemo-mechanical methods (Route 2), in order to discover comparative characteristics of the synthesized cellulose fiber. Comprehensive characterization of RS cellulose was carried out to determine crystallinity, surface morphology, and chemical bonding properties, using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and Fourier transform infra-red (FTIR), respectively. The XRD test results showed that the crystallinity index (CI) of cellulose powder (CP) decreased after the surface modification treatment, Route 2, from 64.50 to 50.10% CI for modified cellulose powder (MCP), due to the surface alteration of cellulose structure. From Route 1, the crystallinity of the fibers decreased up to 33.5% (dissolve cellulose, DC) after the pulp went through the surface modification and dissolution processes, resulting from the transformation of cellulose phase into para-crystalline structure. FESEM micrographs displayed a significant reduction of raw RS diameter from 7.78 µm to 3.34 µm (treated by Route 1) and 1.06 µm (treated by Route 2). The extracted and treated cellulose via both routes, which was considerably dominated by cellulose II because of the high percentage of alkaline used, include the dissolve cellulose (DC). The dissolution process, using NMMO solvent, was performed on the pulp fiber produced by Route 1. The fiber change from cellulose I to cellulose II after undergoes the process. Thus, the dissolution process maintains cellulose II but turned the pulp to the cellulose solution. The acquired characteristics of cellulose from RS waste, extracted by the employed methods, have a considerably greater potential for further application in numerous industries. It was concluded that the great achievement of extracted RS is obtained the nanosized fibers after surface modification treatment, which is very useful for filler in structural composite applications.