This preliminary report is on two patients with congenital pseudoarthrosis of the tibia who had a persistent nonunion following intramedullary rodding and bone grafting. We do not advocate repeated surgery to achieve union. When limb length discrepancy becomes greater than 5 cm, we proceeded with an Ilizarov procedure with the primary aim of equalizing limb length rather than achieving union. Healing of the pseudoarthrosis occurred in both patients after lengthening over the intramedullary rod without compression of the nonunion site. We believe that union occurs because of hyperaemia during the lengthening. This approach minimizes the repeated surgeries that are usually needed and thus ensures a more normal childhood without frequent hospitalizations.
The idea of linear Diophantine fuzzy sets (LDFs) is a novel tool for analysis, soft computing, and optimization. Recently, the concept of a linear Diophantine fuzzy graph has been proposed in 2022. The aim of this research is to extend topological numbers to LDFSs. A real value assigned to a particular graph is known as a topological graph theoretic parameter. We extend the bound of the crisp graph toward the linear Diophantine fuzzy graph (LDFG), including the edge and vertex deletion operations via LDFG theoretic parameters. We also investigate the interesting bound of the LDFGs via LDFG theoretic parameters. Finally, for decision-making problems, we developed an algorithm by exploiting the relationship between LDFG theoretic parameters and LDFSs. Based on the established approach, we discussed a numerical example of an application of a medical diagnosis using the linear Diophantine fuzzy Sombor graph parameter and the first, fifth, and sixth versions of the linear Diophantine fuzzy Sombor graph parameters.
Flashover on transmission line insulators is one of the major causes of line outages due to contamination from the environment or ageing. Power utility companies practicing predictive maintenance are currently exploring novel non-contact methods to monitor insulator surface discharge activities to prevent flashover. This paper presents an investigation on the UV pulse signals detected using UV pulse sensor due to the discharges on the insulator surfaces under varying contamination levels and insulator ages. Unaged and naturally aged insulators (0 to >20 years) were artificially contaminated (none, light to heavy contamination). The electrical stresses on the insulator surfaces were varied to generate varying discharge intensity levels on the surfaces of the insulator. The DC and harmonic components of UV pulse signals detected during surface discharges were recorded and analysed. Results show a positive correlation between the discharge intensity level of contaminated and aged transmission insulators with the DC and harmonic components of the UV pulse signals. Furthermore, the study revealed that under dry insulator surface conditions, insulator ageing has a more profound effect during discharges than contamination level. The findings from this study suggest that the use of UV pulse sensors to monitor UV pulse signals emitted during insulator surface discharges can be another novel non-contact method of monitoring transmission line insulator surface conditions.