The leaf and bark oils of Cinnamomum verum J.S. Presl. were examined for their antifungal activity against 6 dermatophytes (Trichophyton rubrum, T. mentagrophytes, T. tonsurans, Microsporum canis, M. gypseum and M. audouini), one filamentous fungi (Aspergillus fumigatus) and 5 strains of yeasts (Candida albicans, Ca. glabrata, Ca. tropicalis, Ca. parapsilosis and Crytococcus neoformans) by using the broth microdilution method. The antifungal activities of 4 standard compounds (cinnamaldehyde, eugenol, linalool and a-terpineol) which were major constituents in the oils were also investigated in an effort to correlate the effectiveness of the oils with those of the components of the oils. The combined antifungal effect of the oils against M. canis, M. gypseum and Cr. neoformans was investigated by the checkerboard assay. Isobolograms were constructed and Fractional Inhibitory Concentrations Index (FICI) were calculated to determine the combination effects between the oils. The chemical composition of the oils was analyzed by gas chromatography (GC) and gas chromatography- mass spectrometry (GC-MS). The oils showed strong activity against all the tested fungi with Minimum Inhibition Concentration (MIC) values ranging from 0.04 to 0.31 mg/ml. Cinnamaldehyde which was the most abundant component of the bark oil of C. verum showed the strongest activity against all the fungi studied. Based on the results of the assay on standard samples, it may be that the high levels of cinnamaldehyde and eugenol in the oils and in combination with the minor components could be responsible for the high antifungal activity of the oils. The antifungal effect of the leaf and bark oils of C. verum in combination against the tested fungi was not synergistic. However, the effect was additive against M. gypseum and antagonistic against Cr. neoformans and M. canis.
Xanthine oxidase (XO) is an enzyme that catalyzes the metabolism of hypoxanthine and xanthine into uric acid. XO also serves as an important biological source of free radicals that contribute to oxidative damage involved in many pathological processes. Antioxidant effects of several Primulaceae species have been reported but their XO inhibitory activity has not been investigated. Thus, this study was conducted to determine the XO inhibitory and free radical scavenging activities of Primulaceae species and to correlate these activities with their total phenolic contents (TPC). A total of 129 extracts of different plant parts of twelve Primulaceae species were assayed for XO inhibition spectrophotometrically at 290 nm using allopurinol as a positive control. The antioxidant activity was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and TPC of the extracts were determined by the Folin-Ciocalteau method. The Pearson correlation analysis indicated that the TPC of the extracts showed moderate positive correlations with XO inhibition (r=0.31, p<0.05) and DPPH antioxidant activity (r=0.31, p<0.05) for all of the dichloromethane extracts. Amongst the extracts tested, the dichloromethane extract of the roots of Labisia pumila var. alata showed the strongest inhibitory effects for XO (IC50 4.8 μg/mL) and DPPH free radical capacity (IC50 1.7 μg/mL). The results suggested that Primulaceae species, particularly the dichloromethane extract of L. pumila var. alata roots, are the potential source of useful leads for the development of XO inhibitors.
The water decoction of Labisia pumila var. alata is used traditionally in childbirth, as well as for the treatment of flatulence, dysentery, dysmenorrhoea and join pains. This study was carried out to determine the best method and optimum parameters of aqueous axtraction of the leaves and roots of this species. The laboratory methos esed were maceration, ddecoction, reflux and Saxhlet, whereas the parameters studied were temperature, duration and pH of axtraction. The yields and thin layer chromatographic profiles of the freeze-dried extracts were analysed. The study showed that in general the percentage yields of the water soluble extracts were higher for the roots than the leaves, as well as the extracts obtained from heating than those obtained at room temperature. The most effective extraction parameters for L. pumila var. alata were as follows:maceration (25 C, at least 6 hr), decoction (60 C, not exceeding 10 min) and reflux (100 C, not exceeding 4 hr). Saxhlet method was found to be the least effective. The pH analysis had shown the possibility of degradation of some of the phytochemicals at extreme pH values of 1,2 and 14.
There has been an increasing interest in the use of natural materials as drug delivery vehicles due to their biodegradability, biocompatibility and ready availability. These properties make bacterial cellulose (BC), from nata de coco, a promising biopolymer for drug delivery applications. The aim of this study was to investigate the film-coating and drug release properties of this biopolymer. Physicochemical, morphological and thermal properties of BC films were studied. Model tablets were film coated with BC, using a spray coating technique, and in vitro drug release studies of these tablets were investigated. It was found that BC exhibited excellent ability to form soft, flexible and foldable films without the addition
of any plasticizer. They were comparable to Aquacoat ECD (with plasticizer) in tensile strength, percentage elongation and elasticity modulus. Differential scanning calorimetry (DSC) BC showed a high Tg value indicating thermally stability of films. These results suggest that BC can be used as novel aqueous film-coating agent with lower cost and better film forming properties than existing film-coating agents.