Displaying all 5 publications

Abstract:
Sort:
  1. Jamaludin J, Nordin NM, Mohamad N, Etta KM
    Malays J Reprod Health, 1988 Jun;6(1):65-9.
    PMID: 12281593
    Subcutaneous body fat and Quetelet's Indices (QI) of 52, 18-29 year old normal female volunteers were determined. These body mass indices were then grouped according to the phase of each subject's menstrual cycle, early or late follicular and early or late luteal phase. The subcutaneous body fat is 27.07 +or- 1.0% in the early follicular but drops to 24.68 +or- 1.84% in the late follicular phase. The value then rises significantly higher than that in the late follicular phase to 30.14 +or- 1.15% (P0.02) in the early luteal drops to 27.17 +or- 0.55% towards the level of the early follicular phase (P0.05). Variations in the values of QI during each menstrual cycle exactly mirror those for subcutaneous body fat. The fall in the 2 body mass indices during the late follicular phase coincides somewhat with the established preovulatory LH and FSH surges as well as the high levels of estrogen of this period. On the other hand the significant rise in the 2 parameters during the early luteal phase coincides with the marked rise in the ratio of progesterone to estrogen. Clearly, increased levels of progesterone relative to estrogen appear to cause an increase in the body fat during each menstrual cycle. The implication of this finding for women on contraceptive pills which are predominantly progesterone and those whose normal menstrual cycle is "interrupted" at the early luteal phase by a successful fertilization raises very interesting questions with regards to prediction of ovulation.
  2. Razman NA, Wan Ismail WZ, Abd Razak MH, Ismail I, Jamaludin J
    Int J Environ Sci Technol (Tehran), 2023;20(4):3789-3800.
    PMID: 35729914 DOI: 10.1007/s13762-022-04192-x
    Water pollution always occurs in Malaysia due to industrial, construction, agriculture, and household activities. River pollution can disturb water supply that eventually affects business and household activities. Thus, water quality monitoring system is needed to detect contaminated water. We developed a water quality monitoring and filtration system controlled by Arduino. The proposed system was designed in Proteus software and ThingSpeak platform was used for real-time monitoring. The main objective of the study was to compare water quality of river, lake and tap water in terms of pH, temperature, turbidity, electrical conductivity and oxidation-reduction potential. If the water quality was not satisfied, the water sample would be filtered through filtration system. Water turbidity level, pH, temperature, electrical conductivity, and oxidation-reduction potential for filtered and nonfiltered water were compared and analyzed according to international and national water quality standard. Besides that, statistical analysis such as box plot and one-way analysis of variance test was applied to validate data from the system. The real-time water quality monitoring system was implemented through data storage, data transfer, and data processing. The system was connected to wireless fidelity whereas the output data was sent to the user and monitored by ThingSpeak. The system can be further upgraded and scaled up to be applied in the main tank at our home or factory. The outcome of this research can be used as a reference for further study on lake and river pollution monitoring system.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13762-022-04192-x.

  3. Zainurin SN, Wan Ismail WZ, Mahamud SNI, Ismail I, Jamaludin J, Ariffin KNZ, et al.
    Int J Environ Res Public Health, 2022 Oct 28;19(21).
    PMID: 36360992 DOI: 10.3390/ijerph192114080
    Nowadays, water pollution has become a global issue affecting most countries in the world. Water quality should be monitored to alert authorities on water pollution, so that action can be taken quickly. The objective of the review is to study various conventional and modern methods of monitoring water quality to identify the strengths and weaknesses of the methods. The methods include the Internet of Things (IoT), virtual sensing, cyber-physical system (CPS), and optical techniques. In this review, water quality monitoring systems and process control in several countries, such as New Zealand, China, Serbia, Bangladesh, Malaysia, and India, are discussed. Conventional and modern methods are compared in terms of parameters, complexity, and reliability. Recent methods of water quality monitoring techniques are also reviewed to study any loopholes in modern methods. We found that CPS is suitable for monitoring water quality due to a good combination of physical and computational algorithms. Its embedded sensors, processors, and actuators can be designed to detect and interact with environments. We believe that conventional methods are costly and complex, whereas modern methods are also expensive but simpler with real-time detection. Traditional approaches are more time-consuming and expensive due to the high maintenance of laboratory facilities, involve chemical materials, and are inefficient for on-site monitoring applications. Apart from that, previous monitoring methods have issues in achieving a reliable measurement of water quality parameters in real time. There are still limitations in instruments for detecting pollutants and producing valuable information on water quality. Thus, the review is important in order to compare previous methods and to improve current water quality assessments in terms of reliability and cost-effectiveness.
  4. Mustafa FH, Ismail I, Ahmad Munawar AAZ, Abdul Basir B, Shueb RH, Irekeola AA, et al.
    Anal Biochem, 2023 Dec 15;683:115368.
    PMID: 37890549 DOI: 10.1016/j.ab.2023.115368
    Hand, Foot, and Mouth Disease (HFMD) is an outbreak infectious disease that can easily spread among children under the age of five. The most common causative agents of HFMD are enterovirus 71 (EV71) and coxsackievirus A16 (CVA16), but infection caused by EV71 is more associated with fatalities due to severe neurological disorders. The present diagnosis methods rely on physical examinations by the doctors and further confirmation by laboratories detection methods such as viral culture and polymerase chain reaction. Clinical signs of HFMD infection and other childhood diseases such as chicken pox, and allergies are similar, yet the genetics and pathogenicity of the viruses are substantially different. Thus, there is an urgent need for an early screening of HFMD using an inexpensive and user-friendly device that can directly detect the causative agents of the disease. This paper reviews current HFMD diagnostic methods based on various target types, such as nucleic acid, protein, and whole virus. This was followed by a thorough discussion on the emerging sensing technologies for HFMD detection, including surface plasmon resonance, electrochemical sensor, and surface enhanced Raman spectroscopy. Lastly, optical absorption spectroscopic method was critically discussed and proposed as a promising technology for HFMD screening and detection.
  5. Jovani-Sancho AJ, O'Reilly P, Anshari G, Chong XY, Crout N, Evans CD, et al.
    Glob Chang Biol, 2023 Aug;29(15):4279-4297.
    PMID: 37100767 DOI: 10.1111/gcb.16747
    There are limited data for greenhouse gas (GHG) emissions from smallholder agricultural systems in tropical peatlands, with data for non-CO2 emissions from human-influenced tropical peatlands particularly scarce. The aim of this study was to quantify soil CH4 and N2 O fluxes from smallholder agricultural systems on tropical peatlands in Southeast Asia and assess their environmental controls. The study was carried out in four regions in Malaysia and Indonesia. CH4 and N2 O fluxes and environmental parameters were measured in cropland, oil palm plantation, tree plantation and forest. Annual CH4 emissions (in kg CH4 ha-1  year-1 ) were: 70.7 ± 29.5, 2.1 ± 1.2, 2.1 ± 0.6 and 6.2 ± 1.9 at the forest, tree plantation, oil palm and cropland land-use classes, respectively. Annual N2 O emissions (in kg N2 O ha-1  year-1 ) were: 6.5 ± 2.8, 3.2 ± 1.2, 21.9 ± 11.4 and 33.6 ± 7.3 in the same order as above, respectively. Annual CH4 emissions were strongly determined by water table depth (WTD) and increased exponentially when annual WTD was above -25 cm. In contrast, annual N2 O emissions were strongly correlated with mean total dissolved nitrogen (TDN) in soil water, following a sigmoidal relationship, up to an apparent threshold of 10 mg N L-1 beyond which TDN seemingly ceased to be limiting for N2 O production. The new emissions data for CH4 and N2 O presented here should help to develop more robust country level 'emission factors' for the quantification of national GHG inventory reporting. The impact of TDN on N2 O emissions suggests that soil nutrient status strongly impacts emissions, and therefore, policies which reduce N-fertilisation inputs might contribute to emissions mitigation from agricultural peat landscapes. However, the most important policy intervention for reducing emissions is one that reduces the conversion of peat swamp forest to agriculture on peatlands in the first place.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links