MATERIALS AND METHODS: Using a cross-sectional design, cases of ovarian and breast cancer with clinical status of T2DM were selected over a 10-year period in Hospital Universiti Sains Malaysia. Immunohistochemical staining for IGFBP-rP1 was performed on paraffin-embedded tissues and the results were correlated with the patient's demographic and clinicopathological data.
RESULTS: A total of 152 breast cancer patients were recruited into the current study with 33.5% (51/152) patients were positive T2DM. Most of the breast cancer patients with T2DM were IGFBP-rP1-negative (66.7%, 34/51). The IGFBP-rP1 expression was significantly difference between breast cancer subjects with and without T2DM (p<0.001). There was no significant association of IGFBP-rP1 expression with data on the demographic and clinicopathological profiles of patients with breast cancer. Meanwhile, positive IGFBP-rP1 expression was evident in 44 out of 108 (40.74%) ovarian cancer cases. Among these cases, 36 were T2DM. In contrast to breast cancer cases, IGFBP-rP1 was mostly expressed among ovarian cancer patients with T2DM (66.7%, 24/36, p < 0.001). However, the -positive expression was not significantly associated with any sociodemographic and clinicopathological features of ovarian cancers.
CONCLUSIONS: Majority of breast cancer patients with T2DM did not express IGFBP-rP1. In contrast, majority of the ovarian cancer patients with T2DM expressed IGFBP-rP1.
CASE: A 60-year-old woman presented with abdominal discomfort and hyperleukocytosis. She was diagnosed as CML in the chronic phase with positive BCR-ABL1 transcripts. Due to the failure to obtain an optimal response with imatinib treatment, it was switched to nilotinib. She responded well to nilotinib initially and achieved complete haematological and cytogenetic responses, with undetectable BCR-ABL1 transcripts. However, in 4 years she developed molecular relapse. Mutation analysis which was done 70 months after commencement of nilotinib showed the presence of BCRABL1 kinase domain mutation with nucleotide substitution at position 1187 from Histidine(H) to Proline(P) (H396P). Currently, she is on nilotinib 400mg twice daily. Her latest molecular analysis showed the presence of residual BCR-ABL1 transcripts at 0.22%.
DISCUSSION/CONCLUSION: This case illustrates the importance of BCR-ABL1 mutation analysis in CML patients with persistent BCR-ABL1 positivity in spite of treatment. Early detection and identification of the type of BCRABL1 mutation are important to guide appropriate treatment options as different mutation will have different sensitivity to TKI.
MATERIALS AND METHODS: This was a retrospective study of YOCRC (<50 years) over 8 years (January 2013 to December 2021). Immunohistochemistry staining of FOXP3, BRAFV600E, and MMR protein expression was performed using monoclonal antibodies. The staining intensity and percentage of positive cells were used to evaluate the staining using immunoreactive scoring. All data were analysed using descriptive and correlation statistics. A p-value of ≤ 0.05 was taken as statistically significant.
RESULTS: A total of 65 YOCRC patients were diagnosed, out of which 53.8% had proficient MMR (pMMR) with a mean age of 41, while 46.2% had deficient MMR (dMMR) with a mean age of 35.5. The pMMR with the BRAFV600E+ group expressed higher FOXP3+Tregs (54.2%) than the dMMR with the BRAFV600E+ group (22.9%). Patients with lower FOXP3+Tregs were observed more in dMMR with BRAFV600E- (47%) than in pMMR with BRAFV600E- (5.9%). There was a statistically significant association between the density of expressed FOXP3+Tregs with MMR and BRAFV600E status (p=0.002).
CONCLUSION: While most of the YOCRC had pMMR, others exhibited dMMR with loss of one or more MMR proteins. The presence of BRAFV600E demonstrated the YOCRC's sporadic nature. A high FOXP3+Treg expression was significantly associated with MMR and BRAFV600E status. Future research must be expanded to cover other hospitals to increase the sample size and include MLH1 hypermethylation testing.
METHODS: A total of 149 patients were included in the study. HBA and HBB mutations were characterised using multiplex PCR, Sanger sequencing and multiplex ligationdependent probe amplification. In addition, 35 HbF polymorphisms were genotyped using mass spectrometry and PCR-restriction fragment length polymorphism (PCRRFLP). The genotype-phenotype association was analysed using SPSS version 22.
RESULTS: Twenty-one HBB mutations were identified in the study population. Patients with HBB mutations had heterogeneous phenotypic severity due to the presence of other secondary modifiers. Co-inheritance of α-thalassemia (n = 12) alleviated disease severity of β-thalassemia. In addition, three polymorphisms (HBS1LMYB, rs4895441 [P = 0.008, odds ratio (OR) = 0.38 (0.18, 0.78)], rs9376092 [P = 0.030, OR = 0.36 (0.14, 0.90)]; and olfactory receptor [OR51B2] rs6578605 [P = 0.018, OR = 0.52 (0.31, 0.89)]) were associated with phenotypic severity. Secondary analysis of the association between single-nucleotide polymorphisms with HbF levels revealed three nominally significant SNPs: rs6934903, rs9376095 and rs9494149 in HBS1L-MYB.
CONCLUSION: This study revealed 3 types of HbF polymorphisms that play an important role in ameliorating disease severity of β-thalassemia patients which may be useful as a predictive marker in clinical management.