In a coastal village in northwest Malaysia, 3231 fed Anopheles females of eight to 10 species were collected, marked with fluorescent dust, and released on three consecutive nights. In collections made on the 10 nights after the first release, 58 mosquitoes of three species, An. lesteri paraliae, An. subpictus and An. vagus, were recaptured; the recapture rates were 3.42%, 1.19% and 0.97%, respectively. The data for An. subpictus and An. vagus were insufficient for further analysis. Those for An. l. paraliae were plotted against time of recapture and, from the regression coefficient, an estimate of 0.68 was obtained for the daily survival rate. An independent estimate based on the parous rate during the previous year was 0.55. The temporal distribution of the recaptures strongly suggested a gonotrophic cycle and oviposition cycle of two days.
Changes in the abundance of the house fly, Musca domestica, was studied for a period of one year in two poultry farms in Penang, Malaysia: one in Balik Pulau, located in Penang island, and the other in Juru, located on mainland Penang. The sampling of house flies were carried out from March 2007 to April 2008 using the Scudder grill, and the correlation with meteorological conditions particularly rainfall, relative humidity and temperature were observed. In Balik Pulau, the fly abundance showed an inverse relationship to relative humidity and total rainfall. However, no significant correlations were found between the abundance of flies and the above mentioned climatic factors. In contrast, the occurrence of flies in Juru showed strong correlation indices with relative humidity (r=0.803, p<0.05) and total rainfall (r=0.731, p<0.05). Temperature had no significant effect on the abundance of flies in both poultry farms due to imperceptible changes in monthly temperature.
The trend in chemical insecticide development has focused on improving the efficacy against mosquitoes while reducing the environmental impact. Lethal lures apply an "attract-and-kill" strategy that draws the insect to the killing agent rather than bringing the killing agent to the insect.
Larval age and nutrition significantly affected the insect's physiology. These influences are important when rearing a population of vectors that is used to monitor the resistance level, in which standardized conditions are crucial for a more harmonized result. Little information has been reported on the effects of larval age and nutrition on the susceptibility of insects to insecticides, and therefore, we studied the effects on the susceptibility of Culex quinquefasciatus Say's (Diptera: Culicidae) larvae to temephos by comparing the median lethal concentration (LC50) after 24 hr between the second and fourth instar larvae and between the larvae that fed on protein-based and carbohydrate-based larval diets. The susceptibility of the larvae was significantly affected by the larval diets, as the larvae that fed on protein-based beef food and milk food demonstrated significantly higher LC50 value compared with the larvae that fed on carbohydrate-based food: lab food and yeast food. The larval diet interacted significantly with the larval age: while the second instar larvae were susceptible to temephos when supplied with carbohydrate-based food, the second and fourth instar larvae had no significant effect when supplied with protein-based diets, implying that a protein-rich environment may cause the mosquito to be less susceptible to temephos. This study suggested the importance of standardizing nutrition when rearing a vector population in order to obtain more harmonized dosage-response results in an insecticide resistance monitoring program. Future research could focus on the biochemical mechanism between the nutrition and the enzymatic activities of the vector.
The host preferences of eight species of anophelines were studied in two coastal Malaysian villages, Kampung Permatang Rawa and Sungai Udang Kecil, by seven 12-hour catches in each village. Collections were made concurrently from a human-baited net trap, a cow-baited net trap and by human-bait landing catches. Anopheles campestris was attracted almost equally to man and cow, but An. lesteri paraliae, An. nigerrimus, An. peditaeniatus, An. sinensis, An. indefinitus, An. subpictus and An. vagus showed a strong preference for the cow bait. The human-bait landing catches were more productive than the human-baited net trap, which attracted very few mosquitos. Seven more all-night catches were made at each village employing only the cow-baited trap, and the combined data were used to plot the biting-cycles of each species at each site. Although the biting-cycles at the two localities were in general agreement, there were notable differences. At Sungai Udang Kecil, where the collection site was relatively sheltered, several species showed a steady decline in numbers from sunset to sunrise. At Kampung Permatang Rawa, on the other hand, where the site was more exposed and close to the sea, the same species showed a bimodal pattern of activity with an early evening peak followed by a decline then a period of increased activity before sunrise rising to a second, lesser peak at 0500-0600 hours.
Collections of anopheline mosquitos were made twice monthly for 13 months from a cow-baited trap in two villages, Kampung Permatang Rawa and Sungai Udang Kecil, on mainland coastal Penang, Malaysia. Each collection period was six hours from sunset. Unquantified larval collections were made regularly in each area. Although the villages were only about 50km apart, and each had extensive, irrigated rice-fields in its vicinity, the species abundance and the seasonal fluctuations differed significantly. In Kampung Permatang Rawa Anopheles sinensis and An. peditaeniatus were dominant in prevalence, whereas in Sungai Udang Kecil An. indefinitus and An. lesteri paraliae were most common and An. peditaeniatus was relatively rare. The rice growing schedules in the two areas differed, but there was a moderate correlation between the abundance of several species and the rice-growing pattern. There was no correlation at either site with rainfall.
Collections of adult anopheline mosquitos were made from a cow-baited trap in nine coastal villages located along nearly 160km of northwest peninsular Malaysia. Two collections, separated by 1.5 to 6 months, were made at each site. Nearly 6,000 anophelines of 19 species were collected. The dominant species were Anopheles peditaeniatus. An. sinensis, An. subpictus and An. lesteri paraliae. Small numbers of the malaria vectors An. maculatus (at one site) and An. campestris (at four sites) were collected, but no An. sundaicus were recorded.
To evaluate the growth inhibition activity of the crude extract of Cyperus aromaticus (C. aromaticus) cultured cells against the 3rd instar larvae of Aedes aegypti (Linn.) and Aedes albopictus Skuse (Ae. albopictus) under laboratory conditions, and determine the sublethal effects (EI50) of the crude extract of C. aromaticus cultured cells on some biological and morphological parameters of both Aedes mosquito species during two generations as well.
Residents in irrigated urban agricultural sites face numerous mosquito problems such as increased mosquito populations and reduced insecticides susceptibility due to the creation of mosquito breeding sites and agricultural use of insecticides and hence require effective protective products against them. In this study, the protection effectiveness of three pyrethroid formulated mosquito coils of Malaysian origin against Anopheles gambiae sensu lato from an irrigated urban agricultural site in Ghana were evaluated for their potential use. Sucrose fed An. gambiae s.l. were exposed to insecticide-containing coils in a 70 cm x 70 cm x 70 cm glass chamber to assess the insecticidal effect of the coils. The 0.005% metofluthrin coil caused the most rapid knockdown of 50% of the test mosquitoes. The mean lethal effect of the coils on An. gambiae s.l. were as follows; 0.005% metofluthrin (86%), 0.3% d-allethrin (74.33%), 0.15% d-trans allethrin (72%) and the 0.25% d-allethrin reference coil (69%). The 0.005% metofluthrin coil achieved the highest insecticidal effect on An. gambiae s.l. compared to the other coils and hence performed better than the others as an anti-mosquito product. All the three test coils were effective against An. gambaie s.l. from the irrigated agricultural site compared to the reference coil.
Paederus fuscipes Curtis, a dermatitis linearis causing agent, has received increasing attention from the public, as it poses a serious health threat after mass dispersal into human-dominated areas. Preventive measures against this insect have so far been unsuccessful partly because of limited knowledge about its dispersal pattern. In this study, the dispersal activity of P. fuscipes was studied at infestation-prone residential buildings in Mainland Penang, Malaysia. The dispersal activity of P. fuscipes showed two peaks, that is, from February to April and August to October. Overall, there was no statistical significant correlation between dispersal and climatic parameters, that is, temperature, relative humidity, total rainfall, at all sampling localities. However, dispersal was primarily caused by human activities in rice fields, which accounted for >60% of the variability in dispersal. Particularly, rice harvesting, including straw burning, and cultivation were the major factors triggering P. fuscipes dispersal. These activities presumably disrupted the habitat and normal activities of P. fuscipes and rendered the rice fields unfavorable refuges. In addition, the beetles might also face food shortages after the disturbance of their prey base in the crop fields. The current study provides a predictive tool of P. fuscipes flight periods to ensure insecticide residual spraying is timed in the infestation-prone residential areas before the onset of infestation.
The effects of four temperatures (15, 23.5, 28, and 35 degrees C) on the biological characteristics of the rove beetle Paederus fuscipes Curtis were studied, and its cuticular permeability also was measured. Specimens successfully developed to adulthood at each temperature tested, but development time of each preadult stage significantly decreased with increasing temperature. Both egg and L1 stages required at least 80 degree days above a threshold of approximately 10 degrees C to develop to the subsequent stage. The lengthy development time and high survival rate of preadults at 15 degrees C suggests that P. fuscipes can survive in a harsh environment during cold weather by hibernating, and this ability could allow preadults to succeed ecologically in temperate countries. However, adult longevity was short, and no fecundity was recorded at 15 degrees C. At 28 degrees C, P. fuscipes exhibited a high survival rate of adults, which had a longer life span and high fecundity; thus, the population had the highest intrinsic rate of increase (0.0788 +/- 0.0051 d(-1)) and the shortest mean generation time (48.57 +/- 1.43 d) at 28 degrees C. At this temperature, the population might reach a size that could facilitate invasion into residential areas. However, in the absence of a hygric environment, P. fuscipes was unable to survive despite favorable temperature. Unlike in adults and pupae, high cuticular permeability values were found in the larval stages. This indicates that larvae are highly susceptible to desiccation, and it explains why the distribution of P. fuscipes is restricted to moist habitats.
This study focuses on the larvicidal, oviposition, and ovicidal effects of a crude extract of Artemisia annua against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus. Dried cells of Artemisia annua from cell suspension cultures were extracted using hexane. The extract showed moderate larvicidal effects against mosquitoes. At 24-h post treatment, the LC50 values for Anopheles sinensis, Aedes aegypti, and Culex quinquefasciatus were recorded as 244.55, 276.14, and 374.99 ppm, respectively. The percentage mortality of larvae was directly proportional to the tested concentration. Anopheles sinensis was found to be the most susceptible species, whereas Culex quinquefasciatus was the most tolerant to the Artemisia annua extract. The results indicated that the Artemisia annua extract showed concentration-dependent oviposition deterrent activity and had a strong deterrent effect. At 500 ppm, the percentage effective repellency was more than 85% compared with the control group for all the species, with oviposition activity index values of -0.94, -0.95, and -0.78 for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. In the ovicidal assay, the percentage hatchability of eggs after treatment with 500 ppm of Artemisia annua extract was significantly lower than the control, with values of 48.84 ± 4.08, 38.42 ± 3.67, and 79.35 ± 2.09% for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. Artemisia annua was found to be more effective against Aedes aegypti and Anopheles sinensis compared with Culex quinquefasciatus. This study indicated that crude extract of A. annua could be a potential alternative for use in vector management programs.
The life history characteristics of the rove beetle Paederus fuscipes Curtis were studied under laboratory conditions using three field strains from Malaysia: Desa Wawasan (DW), Sri Pinang (SP), and Ampang Jajar (AJ). The total development time of immature stages differed significantly among the three strains, especially between DW (17.43 +/- 0.16 d), SP (18.60 +/- 0.19 d), and AJ (18.68 +/- 0.22 d). Adult females and males from DW also exhibited a shorter life span, although the difference among strains was not significant. In terms of fecundity, the numbers of eggs laid per female for DW, SP, and AJ were 121.28 +/- 15.98, 127.30 +/- 18.01, and 147.45 +/- 17.12, respectively. Additionally, because of the shorter life span in DW strain, two apparent peaks in age-stage specific fecundity were detected. The beetles compensated for their shorter life span by increasing their reproductive activity to sustain the progeny in the population. The intrinsic rates of increase (r) of P. fuscipes from DW, SP, and AJ were 0.0773 +/- 0.0046 d(-1), 0.0788 +/- 0.0051 d(-1), and 0.0873 +/- 0.0054 d(-1), respectively; and the net reproduction rates (R0) were 40.09 +/- 7.39 offspring, 45.29 +/- 8.74 offspring, and 42.34 +/- 8.25 offspring, respectively. The mean generation time of P. fuscipes from AJ was 43.08 +/- 1.07 d, which was significantly higher than that from DW (47.95 +/- 1.36 d) and SP (48.57 +/- 1.43 d). The total immature development time of P. fuscipes in this study was shorter than values reported in previous studies.
Although rove beetles (Paederus spp.) play a beneficial role as biological control agents to manage crop pests in agro-ecosystems, their high prevalence in human settings has elevated them to pest status in urban areas. Rove beetles neither bite nor sting, but accidental crushing on human skin causes them to release the toxin paederin, which causes dermatitis linearis. This review integrates currently available knowledge about the issues pertaining to Paederus infestation. For instance, the results of life history studies conducted under different food and temperature regimes are summarized, as they indicate how large a population can be in a habitat to cause massive and widespread infestation and illustrate the physiological traits required to maintain the population at the maximum level even under adverse conditions. In contrast to what is generally reported, we speculate that climatic factors do not necessarily result in Paederus dispersal in temperate regions; instead, habitat disturbance and site unsuitability may be the main factors that lead to massive dispersal to human settings. Factors such as whether dispersers are adaptable to xeric conditions in human settings, the probability that dispersed Paederus mate with the opposite sex, and whether dispersers have adequate nutrient intake to reproduce are considered to evaluate their potential to reproduce in human settings. Finally, the effectiveness of current commercial insecticides, challenges faced in managing infestations, and sustainable management practices are discussed to provide information for long-term control programs.
Septins belong to GTPases that are involved in vital cellular activities, including cytokinesis. Although present in many organisms, they are yet to be isolated from Aedes albopictus. This study reports for the first time on a serendipitous isolation of a partial septin sequence from Ae. albopictus and its developmental expression profile. The Ae. albopictus partial septin sequence contains 591 nucleotides encoding 197 amino acids. It shares homology with several insect septin genes and has a close phylogenetic relationship with Aedes aegypti and Culex quinquefasciatus septins. The Ae. albopictus septin fragment was differentially expressed in the mosquito's developmental stages, with an increased expression in the adults.
The contact toxicity of four insecticide formulations (deltamethrin, fipronil, fenitrothion, and imidacloprid) applied on three different substrates (tile, plywood, and concrete) against the adult rove beetle, Paederus fuscipes Curtis, was evaluated. The relative order of speed of killing effects was as follows: deltamethrin > imidacloprid > fipronil > fenitrothion. Although deltamethrin showed the fastest action against P. fuscipes, the recovery rate of rove beetles at 48 h posttreatment was moderate (approximately 25%) on the tile surface to high (approximately 80%) on the plywood surface. Thus, it is likely that the insects did not pick up the lethal dose especially on porous surfaces. In contrast, fipronil demonstrated delayed toxicity that might promote maximal uptake by the insects. More than 80% mortality was registered for tile and plywood surfaces up to 4 wk after exposure. High mortality (almost 100%) was recorded for imidacloprid-exposed P. fuscipes at 48 h posttreatment, but only on the tile surface. Among the four insecticides tested, fenitrothion was the least effective against P. fuscipes because low percentage to no mortality was recorded in the fenitrothion treatment.
In this study, the toxicology of two commercial larvicides--cyromazine (Neporex 50SP) and ChCy (combination of chlorpyrifos and cypermethrin, Naga 505)--and five commercial adulticides--thiamethoxam (Agita 10WG), cyfluthrin (Responsar WP), lambda-cyhalothrin (Icon 2.8EC), fipronil (Regent 50SC), and imidacloprid (Toxilat 10WP)--was examined against the WHO/VCRU (World Health Organization/ Vector Control Research Unit) susceptible strain and the AYTW (Ayer Tawar) field strain of house fly, Musca domestica L. These pesticides were administered topically, in the diet, or as a dry residue treatment on plywood. Probit analysis using at least five concentrations and the concentration that was lethal to 50% (LC(50)) of the organisms was applied to compare the toxicology and resistance levels of the AYTW population to different insecticides. In the larvicide laboratory study, ChCy was more effective than cyromazine, with a significantly lower LC(50) value when administered topically or in the diet, although the AYTW population was susceptible to both larvicides with a resistance ratio (RR) <10. For the adulticide laboratory study, cyfluthrin and fipronil exhibited the lowest LC50 values of the adulticides, indicating that they are both effective at controlling adult flies, although lambda-cyhalothrin showed moderate resistance (RR = 11.60 by topical application; 12.41 by plywood treatment). Further investigation of ChCy, cyromazine, cyfluthrin, and fipronil under field conditions confirmed that ChCy and cyromazine strikingly reduced larval density, and surprisingly, ChCy also exhibited adulticidal activity, which significantly reduced adult fly numbers compared with the control group. Cyfluthrin and fipronil were also confirmed to be effective, with a significant reduction in adult fly numbers compared with the control group.
The potential of integrating the mycoinsecticide, Metarhizium anisopliae (Met.), into house fly control programs is tremendous. However, the interaction between the fungus and insecticide, when applied at poultry farms, remains poorly understood. This study investigated the interaction between M. anisopliae and two selected insecticides, cyromazine and ChCy (a mixture of chlorpyrifos and cypemethrin), with three objectives: to assess the compatibility of M. anisopliae and the insecticides by measuring fungal vegetative growth and conidia production in the presence of insecticides; to evaluate the effect of M. anisopliae on these insecticides by analyzing insecticidal residue using ultra performance liquid chromatography; and to study the synergistic effects of M. anisopliae and the insecticides by applying sublethal concentrations of insecticides with M. anisopliae to house fly larvae. Metarhizium anisopliae was more tolerant to ChCy than to cyromazine, as M. anisopliae showed significantly more growth when grown with this insecticide. The M. anisopliae + ChCy combination resulted in significantly less chlorpyrifos residues compared to the ChCy plate, and 62-72% house fly larva mortality occurred when M. anisopliae and sublethal concentrations of ChCy were combined, implicating synergistic effects of the fungus with low concentrations of ChCy. Integrating M. anisopliae with compatible chemical at right concentration is crucial for poultry farm house fly control programs.
Knowledge on the extent, distribution and mechanisms of insecticide resistance is essential for successful insecticide-based dengue control interventions. Here, we report an extensive resistance profiling of the dengue vectors Aedes aegypti and Aedes albopictus across Malaysia and establish the contribution of knockdown resistance mechanism revealing significant contrast between both species.
Mosquito coils are insecticides commonly used for protection against mosquitoes due to their toxic effects on mosquito populations. These effects on mosquitoes could induce the expression of metabolic enzymes in exposed populations as a counteractive measure. Cytochrome P450 family 4 (CYP4) are metabolic enzymes associated with a wide range of biological activities including insecticide resistance. In this study, the efficacies of three commercial mosquito coils with different pyrethroid active ingredients were assessed and their potential to induce the expression of CYP4 genes in Aedes albopictus analyzed by real-time quantitative PCR. Coils containing 0.3 % D-allethrin and 0.005 % metofluthrin exacted profound toxic effects on Ae. albopictus, inducing high mortalities (≥90 %) compared to the 0.2 % D-allethrin reference coil. CYP4H42 and CYP4H43 expressions were significantly higher in 0.3 % D-allethrin treated mosquitoes compared to the other treated populations. Short-term (KT50) exposure to mosquito coils induced significantly higher expression of both genes in 0.005 % metofluthrin exposed mosquitoes. These results suggest the evaluated products provided better protection than the reference coil; however, they also induced the expression of metabolic genes which could impact negatively on personal protection against mosquito.