Displaying all 7 publications

Abstract:
Sort:
  1. Izuddin WI, Loh TC, Samsudin AA, Foo HL, Humam AM, Shazali N
    BMC Vet Res, 2019 Sep 02;15(1):315.
    PMID: 31477098 DOI: 10.1186/s12917-019-2064-9
    BACKGROUND: Postbiotics have been established as potential feed additive to be used in monogastric such as poultry and swine to enhance health and growth performance. However, information on the postbiotics as feed additive in ruminants is very limited. The aim of this study was to elucidate the effects of supplementation of postbiotics in newly-weaned lambs on growth performance, digestibility, rumen fermentation characteristics and microbial population, blood metabolite and expression of genes related to growth and volatile fatty acid transport across the rumen epithelium.

    RESULTS: Postbiotic supplementation increased weight gain, feed intake, nutrient intake and nutrient digestibility of the lambs. No effect on ruminal pH and total VFA, whereas butyrate and ruminal ammonia-N concentration were improved. The lambs fed with postbiotics had higher blood total protein, urea nitrogen and glucose. However, no difference was observed in blood triglycerides and cholesterol levels. Postbiotics increased the population of fibre degrading bacteria but decreased total protozoa and methanogens in rumen. Postbiotics increased the mRNA expression of hepatic IGF-1 and ruminal MCT-1.

    CONCLUSIONS: The inclusion of postbiotics from L. plantarum RG14 in newly-weaned lambs improved growth performance, nutrient intake and nutrient digestibility reflected from better rumen fermentation and microbial parameters, blood metabolites and upregulation of growth and nutrient intake genes in the post-weaning lambs.

  2. Humam AM, Loh TC, Foo HL, Izuddin WI, Zulkifli I, Samsudin AA, et al.
    Poult Sci, 2021 Mar;100(3):100908.
    PMID: 33518339 DOI: 10.1016/j.psj.2020.12.011
    The aim of this work was to evaluate the impacts of feeding different levels of postbiotic RI11 on antioxidant enzyme activity, physiological stress indicators, and cytokine and gut barrier gene expression in broilers under heat stress. A total of 252 male broilers Cobb 500 were allocated in cages in environmentally controlled chambers. All the broilers received the same basal diet from 1 to 21 d. On day 22, the broilers were weighed and grouped into 7 treatment groups and exhibited to cyclic high temperature at 36 ± 1°C for 3 h per day until the end of the experiment. From day 22 to 42, broilers were fed with one of the 7 following diets: negative control, basal diet (0.0% RI11) (NC group); positive control, NC diet + 0.02% (w/w) oxytetracycline (OTC group); antioxidant control, NC diet + 0.02% (w/w) ascorbic acid. The other 4 other groups were as follows: NC diet + 0.2% cell-free supernatant (postbiotic RI11) (v/w), NC diet + 0.4% cell-free supernatant (postbiotic RI11) (v/w), NC diet + 0.6% cell-free supernatant (postbiotic RI11) (v/w), and NC diet + 0.8% cell-free supernatant (postbiotic RI11) (v/w). Supplementation of different levels (0.4, 0.6, and 0.8%) of postbiotic RI11 increased plasma glutathione peroxidase, catalase, and glutathione enzyme activity. Postbiotic RI11 groups particularly at levels of 0.4 and 0.6% upregulated the mRNA expression of IL-10 and downregulated the IL-8, tumor necrosis factor alpha, heat shock protein 70, and alpha-1-acid glycoprotein levels compared with the NC and OTC groups. Feeding postbiotic RI11, particularly at the level of 0.6%, upregulated ileum zonula occludens-1 and mucin 2 mRNA expressions. However, no difference was observed in ileum claudin 1, ceruloplasmin, IL-6, IL-2, and interferon expression, but downregulation of occludin expression was observed as compared with the NC group. Supplementation of postbiotic RI11 at different levels quadratically increased plasma glutathione peroxidase, catalase and glutathione, IL-10, mucin 2, and zonula occludens-1 mRNA expression and reduced plasma IL-8, tumor necrosis factor alpha, alpha-1-acid glycoprotein, and heat shock protein 70 mRNA expression. The results suggested that postbiotics produced from Lactiplantibacillus plantarum RI11 especially at the level of 0.6% (v/w) could be used as an alternative to antibiotics and natural sources of antioxidants in poultry feeding.
  3. Azizi MN, Loh TC, Foo HL, Akit H, Izuddin WI, Yohanna D
    Animals (Basel), 2023 May 09;13(10).
    PMID: 37238013 DOI: 10.3390/ani13101582
    The study was designed to analyze the effects of brown seaweed (BS) and green seaweed (GS) on blood plasma antioxidant enzyme activities, hepatic antioxidant genes expression, blood plasma lipid profile, breast meat quality, and chemical composition in broiler chickens. The dietary treatment groups contained basal diet [negative control (NC)], basal diet + vitamin E (100 mg/kg feed) [positive control (PC)], basal diet + 0.25, 0.50, 0.75, 1, and 1.25% BS and GS supplements separately. The findings showed that both BS and GS exhibited remarkable antioxidant activity. In contrast, the maximum antioxidant activity was recorded by BS (55.19%), which was significantly higher than the GS (25.74%). Results showed that various levels of BS and GS had no significant effects on broiler blood plasma catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) enzyme activities. The hepatic superoxide dismutase 1 (SOD1) gene mRNA expression was significantly higher for birds fed 0.50% and 0.75% BS. Regarding the plasma lipid profile, the total cholesterol (TC) and high-density lipoprotein (HDL) levels were higher (p < 0.05) for birds fed 0.75 and 1% BS compared to the negative and positive control groups. The findings showed that different levels of BS and GS had significantly higher breast meat crude protein (CP) content.
  4. Izuddin WI, Loh TC, Foo HL, Samsudin AA, Humam AM
    Sci Rep, 2019 Jul 09;9(1):9938.
    PMID: 31289291 DOI: 10.1038/s41598-019-46076-0
    We investigate the effects of postbiotic Lactobacillus plantarum RG14 on gastrointestinal histology, haematology, mucosal IgA concentration, microbial population and mRNA expression related to intestinal mucosal immunity and barrier function. Twelve newly weaned lambs were randomly allocated to two treatment groups; the control group without postbiotic supplementation and postbiotic group with supplementation of 0.9% postbiotic in the diet over a 60-day trial. The improvement of rumen papillae height and width were observed in lambs fed with postbiotics. In contrast, no difference was shown in villi height of duodenum, jejunum and ileum between the two groups. Lambs received postbiotics had a lower concentration of IgA in jejunum but no difference in IgA concentration in serum and mucosal of the rumen, duodenum and ileum. In respect of haematology, postbiotics lowered leukocyte, lymphocyte, basophil, neutrophil and platelets, no significant differences in eosinophil. The increase in of IL-6 mRNA and decrease of IL-1β, IL-10, TNF mRNA were observed in the jejunum of lambs receiving postbiotics. Postbiotics also improved the integrity of the intestinal barrier by the upregulation of TJP-1, CLDN-1 and CLDN-4 mRNA. Postbiotic supplementation derived from L. plantarum RG14 in post-weaning lambs enhance the ruminal papillae growth, immune status and gastrointestinal health.
  5. Izuddin WI, Loh TC, Nayan N, Akit H, Noor AM, Foo HL
    Front Vet Sci, 2023;10:1192841.
    PMID: 37519991 DOI: 10.3389/fvets.2023.1192841
    The palm oil, palm kernel oil and soybean oil have unique and distinctive fatty acid chain length and saturation profiles, and how they affect lipid peroxidation, fatty acid intake and metabolism is worth exploring in poultry. This study elucidated the influence the dietary oils on lipid peroxidation, blood lipid profiles, fatty acid deposition of liver, serum and yolk and the expression of liver genes related to lipid and lipoprotein metabolism in laying hens. About 150 Hisex brown laying hens were fed diets containing crude palm oil (CPO), red palm oil (RPO), refined palm oil (RBD), palm kernel oil (PKO) or soybean oil (SBO) for 16 weeks. Serum, liver and yolk lipid peroxidation were not different between dietary oils. The PKO increased liver, serum and yolk medium-chain fatty acids (MCFA). There was no difference in liver saturated fatty acids (SFA). The CPO and RPO reduced serum SFA, but the PKO increased yolk SFA. The SBO increased polyunsaturated fatty acids (PUFA) in liver serum and yolk. No difference in liver elaidic acid (C18:1-trans), but SBO lowered elaidic acid (C18:1-trans) in serum. Higher very-low density lipoprotein (VLDL) in CPO than RPO and SBO and greater serum lipase in CPO, RBD and PKO than SBO. There was no difference in sterol regulatory element-binding protein 2 (SREBP-II) between oils. Apolipoprotein VLDL-II (APOVLDL2) was upregulated in palm oils and apolipoprotein B-100 (APOB) in RBD. Downregulation in peroxisome proliferator-activated receptor-alpha (PPAR-α), peroxisome proliferator-activated receptor gamma (PPAR-γ) and low-density lipoprotein receptor (LDLR) was observed in palm oils and PKO. In conclusion, different dietary oils greatly influence several aspects of fatty acid metabolism, deposition and lipoprotein profiles but have no influence on reducing lipid peroxidation.
  6. Azizi MN, Loh TC, Foo HL, Akit H, Izuddin WI, Shazali N, et al.
    Animals (Basel), 2021 Jul 20;11(7).
    PMID: 34359273 DOI: 10.3390/ani11072147
    This study aimed to analyse the nutritional properties, apparent ileal digestibility (AID) and apparent metabolisable energy (AME) of broiler chickens fed with brown seaweed (BS) and green seaweed (GS). Proximate analysis was performed to determine the nutrient composition of seaweed. The amino acids were determined using high-performance liquid chromatography (HPLC), and atomic absorption spectroscopy was used to determine the minerals content. The gross energy (GE) was determined using a fully automatic bomb calorimeter, and the AME value was calculated. Titanium dioxide (TiO2) was used as an indigestible marker to calculate the AID. A digestibility trial was conducted to investigate the effects of seaweeds on crude protein (CP), crude fibre (CF), ether extract (EE), dry matter (DM), organic matter (OM), amino acids (AA) and minerals digestibility, and AME on broiler chickens. Thirty-six broiler chickens were randomly distributed into two dietary treatment groups with six replicates and three birds per replicate. Results showed that brown and green seaweed was a source of macro and micronutrients. For the AME and AID of seaweed-based diets, the results showed that the AME value for BS and GS was 2894.13 and 2780.70 kcal/kg, respectively. The AID of BS and GS was 88.82% and 86.8% for EE, 82.03% and 80.6% for OM, 60.69% and 57.80% for CP, 48.56 and 44.02% for CF, and 17.97 and 19.40% for ash contents, respectively. Meanwhile, the AID of CP and CF was significantly higher for BS compared to the GS. Findings showed that the AID of various AA was 40.96 to 77.54%, and the AID of selected minerals (Ca, Na, K, Mg, Zn, Cu, Fe) for both BS and GS groups were above 90%.
  7. Humam AM, Loh TC, Foo HL, Izuddin WI, Awad EA, Idrus Z, et al.
    Animals (Basel), 2020 Jun 05;10(6).
    PMID: 32516896 DOI: 10.3390/ani10060982
    The purpose of this work was to evaluate the impacts of feeding different postbiotics on oxidative stress markers, physiological stress indicators, lipid profile and meat quality in heat-stressed broilers. A total of 252 male Cobb 500 (22-day-old) were fed with 1 of 6 diets: A basal diet without any supplementation as negative control (NC); basal diet + 0.02% oxytetracycline served as positive control (PC); basal diet + 0.02% ascorbic acid (AA); or the basal diet diet + 0.3% of RI11, RS5 or UL4 postbiotics. Postbiotics supplementation, especially RI11 increased plasma activity of total-antioxidant capacity (T-AOC), catalase (CAT) and glutathione (GSH), and decreased alpha-1-acid-glycoprotein (α1-AGP) and ceruloplasmin (CPN) compared to NC and PC groups. Meat malondialdehyde (MDA) was lower in the postbiotic groups than the NC, PC and AA groups. Plasma corticosterone, heat shock protein70 (HSP70) and high density lipoprotein (HDL) were not affected by dietary treatments. Postbiotics decreased plasma cholesterol concentration compared to other groups, and plasma triglyceride and very low density lipoprotein (VLDL) compared to the NC group. Postbiotics increased breast meat pH, and decreased shear force and lightness (L*) compared to NC and PC groups. The drip loss, cooking loss and yellowness (b*) were lower in postbiotics groups compared to other groups. In conclusion, postbiotics particularly RI11 could be used as an alternative to antibiotics and natural sources of antioxidants for heat-stressed broilers.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links