The transformation of systematic vacuum and hydrogen annealing effects in graphene devices on the SiO2 surface is reported based on experimental and van der Waals interaction corrected density functional theory (DFT) simulation results. Vacuum annealing removes p-type dopants and reduces charged impurity scattering in graphene. Moreover, it induces n-type doping into graphene, leading to the improvement of the electron mobility and conductivity in the electron transport regime, which are reversed by exposing to atmospheric environment. On the other hand, annealing in hydrogen/argon gas results in smaller n-type doping along with a decrease in the overall conductivity and carrier mobility. This degradation of the conductivity is irreversible even the graphene devices are exposed to ambience. This was clarified by DFT simulations: initially, silicon dangling bonds were partially terminated by hydrogen, subsequently, the remaining dangling bonds became active and the distance between the graphene and SiO2 surface decreased. Moreover, both annealing methods affect the graphene channel including the vicinity of the metal contacts, which plays an important role in asymmetric carrier transport.
We report on magnetotransport in a high-quality graphene device, which is based on monolayer graphene (Gr) encapsulated by hexagonal boron nitride (hBN) layers, i.e., hBN/Gr/hBN stacks. In the vicinity of the Dirac point, a negative magnetoconductance is observed for high temperatures > ~ 40 K, whereas it becomes positive for low temperatures ≤ ~ 40 K, which implies an interplay of quantum interferences in Dirac materials. The elastic scattering mechanism in hBN/Gr/hBN stacks contrasts with that of conventional graphene on SiO2, and our ultra-clean graphene device shows nonzero magnetoconductance for high temperatures of up to 300 K.
We report on the observation of quantum transport and interference in a graphene device that is attached with a pair of split gates to form an electrostatically-defined quantum point contact (QPC). In the low magnetic field regime, the resistance exhibited Fabry-Pérot (FP) resonances due to np'n(pn'p) cavities formed by the top gate. In the quantum Hall (QH) regime with a high magnetic field, the edge states governed the phenomena, presenting a unique condition where the edge channels of electrons and holes along a p-n junction acted as a solid-state analogue of a monochromatic light beam. We observed a crossover from the FP to QH regimes in ballistic graphene QPC under a magnetic field with varying temperatures. In particular, the collapse of the QH effect was elucidated as the magnetic field was decreased. Our high-mobility graphene device enabled observation of such quantum coherence effects up to several tens of kelvins. The presented device could serve as one of the key elements in future electronic quantum optic devices.