Glass ionomer cement (GIC) has theunique fluoride release property and able to formionic bond with tooth structure. However, the brittleness of the material results in low hardness. In the present study, a new approach in utilization of local waste materials as fillers for improvement of hardness of GIC is reported.The synthesized wollastonite and mine-silica by-product were individually incorporated into commercial GIC and the Vickers hardness were evaluated. The results shown that the incorporation of 1 % wollastonite into GIC gave ~ 6% increment in hardness compared to the control GIC (66.53H ±7.37 versus 62.66HV±2.98)but not for themine-silica. Thus, wollastonite could be a potential material to be utilized as fillersin dental restorative composite
The aim of this study was to determine the genotoxicity of a locally produced nanocomposite by Universiti Sains Malaysia, Malaysia using Comet assay. Stem cells from human exfoliated deciduous teeth (SHED) were treated with the nanocomposite at five different concentrations (0.006, 0.0125, 0.025, 0.05, and 0.1 mg/ml) along with concurrent negative (medium alone) and positive control (zinc sulfate heptahydrate) and incubated at 37°C for 24 hours in an incubator at 5% CO2. The tail moment was used to assess the extent of DNA damage. The tail moment for the group of SHED treated with nanocomposite (for all the five different concentrations) was not statistically significant as compared to the negative control, suggesting that the locally produced dental nanocomposite did not induce any DNA damage. Hence, it can be concluded that the locally produced nanocomposite is non-genotoxic on stem cells from human exfoliated deciduous teeth.