Displaying all 3 publications

Abstract:
Sort:
  1. Latif G, Iskandar DNFA, Alghazo J, Butt MM
    Curr Med Imaging, 2021;17(1):56-63.
    PMID: 32160848 DOI: 10.2174/1573405616666200311122429
    BACKGROUND: Detection of brain tumor is a complicated task, which requires specialized skills and interpretation techniques. Accurate brain tumor classification and segmentation from MR images provide an essential choice for medical treatments. Different objects within an MR image have similar size, shape, and density, which makes the tumor classification and segmentation even more complex.

    OBJECTIVE: Classification of the brain MR images into tumorous and non-tumorous using deep features and different classifiers to get higher accuracy.

    METHODS: In this study, a novel four-step process is proposed; pre-processing for image enhancement and compression, feature extraction using convolutional neural networks (CNN), classification using the multilayer perceptron and finally, tumor segmentation using enhanced fuzzy cmeans method.

    RESULTS: The system is tested on 65 cases in four modalities consisting of 40,300 MR Images obtained from the BRATS-2015 dataset. These include images of 26 Low-Grade Glioma (LGG) tumor cases and 39 High-Grade Glioma (HGG) tumor cases. The proposed CNN feature-based classification technique outperforms the existing methods by achieving an average accuracy of 98.77% and a noticeable improvement in the segmentation results are measured.

    CONCLUSION: The proposed method for brain MR image classification to detect Glioma Tumor detection can be adopted as it gives better results with high accuracies.

  2. Latif G, Alghazo J, Sibai FN, Iskandar DNFA, Khan AH
    Curr Med Imaging, 2021;17(8):917-930.
    PMID: 33397241 DOI: 10.2174/1573405616666210104111218
    BACKGROUND: Variations of image segmentation techniques, particularly those used for Brain MRI segmentation, vary in complexity from basic standard Fuzzy C-means (FCM) to more complex and enhanced FCM techniques.

    OBJECTIVE: In this paper, a comprehensive review is presented on all thirteen variations of FCM segmentation techniques. In the review process, the concentration is on the use of FCM segmentation techniques for brain tumors. Brain tumor segmentation is a vital step in the process of automatically diagnosing brain tumors. Unlike segmentation of other types of images, brain tumor segmentation is a very challenging task due to the variations in brain anatomy. The low contrast of brain images further complicates this process. Early diagnosis of brain tumors is indeed beneficial to patients, doctors, and medical providers.

    RESULTS: FCM segmentation works on images obtained from magnetic resonance imaging (MRI) scanners, requiring minor modifications to hospital operations to early diagnose tumors as most, if not all, hospitals rely on MRI machines for brain imaging.

    CONCLUSION: In this paper, we critically review and summarize FCM based techniques for brain MRI segmentation.

  3. Latif G, Al Falanezi Pmu Edu saAnezi FY, Iskandar DNFA, Bashar A, Alghazo J
    Curr Med Imaging, 2022 Jan 17.
    PMID: 35040408 DOI: 10.2174/1573405618666220117151726
    BACKGROUND: The task of identifying a tumor in the brain is a complex problem that requires sophisticated skills and inference mechanisms to accurately locate the tumor region. The complex nature of the brain tissue makes the problem of locating, segmenting, and ultimately classifying Magnetic Resonance (MR) images a complex problem. The aim of this review paper is to consolidate the details of the most relevant and recent approaches proposed in this domain for the binary and multi-class classification of brain tumors using brain MR images.

    OBJECTIVE: In this review paper, a detailed summary of the latest techniques used for brain MR image feature extraction and classification is presented. A lot of research papers have been published recently with various techniques proposed for identifying an efficient method for the correct recognition and diagnosis of brain MR images. The review paper allows researchers in the field to familiarize themselves with the latest developments and be able to propose novel techniques that have not yet been explored in this research domain. In addition, the review paper will facilitate researchers, who are new to machine learning algorithms for brain tumor recognition, to understand the basics of the field and pave the way for them to be able to contribute to this vital field of medical research.

    RESULTS: In this paper, the review is performed for all recently proposed methods for both feature extraction and classification. It also identifies the combination of feature extraction methods and classification methods that when combined would be the most efficient technique for the recognition and diagnosis of brain tumor from MR images. In addition, the paper presents the performance metrics particularly the recognition accuracy, of selected research published between 2017- 2021.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links