Displaying all 3 publications

Abstract:
Sort:
  1. Nasser SM, Khandaker MU, Bradley DA, Isinkaye MO
    Radiat Prot Dosimetry, 2019 Oct 01;184(3-4):422-425.
    PMID: 31038706 DOI: 10.1093/rpd/ncz088
    The present study concerns measurement of the radon concentration in drinking and irrigation waters obtained from the eastern part of Oman, in particular in regard to water quality assessment of the region. The samples were collected from different places covering most types of water sources in the region. A passive and time-integrated track etch detector (LR-115 type II) combined with a high-resolution optical microscope has been used to obtain the radon concentration in the studied samples. Values of dissolved radon in water varied among the water sources; the highest concentration of radon was found to be 363 Bq m-3 in a drinking water sample while well water used for irrigation showed the lowest value, at 140 Bq m-3. Measured data for all water sources are below the permissible limit of 11.1 kBq m-3 recommended by the US-EPA. Annual effective doses for the studied samples were in the range 0.38-0.99 μSv y-1 which is significantly less than the action level recommended by the WHO (0.1 mSv y-1), indicating that the water sources in the Jalan BBH region of Oman are safe to use. The obtained data may serve as a reference for any future radiological study of the waterbody of this region.
  2. Khandaker MU, Asaduzzaman K, Sulaiman AFB, Bradley DA, Isinkaye MO
    Mar Pollut Bull, 2018 Feb;127:654-663.
    PMID: 29475708 DOI: 10.1016/j.marpolbul.2017.12.055
    Study is made of the radioactivity in the beach sands of Langkawi island, a well-known tourist destination. Investigation is made of the relative presence of the naturally occurring radionuclide 40K and the natural-series indicator radionuclides 226Ra and 232Th, the gamma radiation exposure also being estimated. Sample quantities of black and white sand were collected for gamma ray spectrometry, yielding activity concentration in black sands of 226Ra, 232Th and 40K from 451±9 to 2411±65Bqkg-1 (mean of 1478Bqkg-1); 232±4 to 1272±35Bqkg-1 (mean of 718Bqkg-1) and 61±6 to 136±7Bqkg-1 (mean of 103Bqkg-1) respectively. Conversely, in white sands the respective values for 226Ra and 232Th were appreciably lower, at 8.3±0.5 to 13.7±1.4Bqkg-1 (mean of 9.8Bqkg-1) and 4.5±0.7 to 9.4±1.0Bqkg-1 (mean of 5.9Bqkg-1); 40K activities differed insubstantially from that in black sands, at 85±4 to 133±7Bqkg-1 with a mean of 102Bqkg-1. The mean activity concentrations of 226Ra and 232Th in black sands are comparable with that of high background areas elsewhere in the world. The heavy minerals content gives rise to elevated 226Ra and 232Th activity concentrations in all of black sand samples. Evaluation of the various radiological risk parameters points to values which in some cases could be in excess of recommendations providing for safe living and working. Statistical analysis examines correlations between the origins of the radionuclides, also identifying and classifying the radiological parameters. Present results may help to form an interest in rare-earth resources for the electronics industry, power generation and the viability of nuclear fuels cycle resources.
  3. Isinkaye MO, OlaOlorun OA, Chandrasekaran A, Adekeye AS, Dada TE, Tamilarasi A, et al.
    Heliyon, 2023 Nov;9(11):e22451.
    PMID: 38034673 DOI: 10.1016/j.heliyon.2023.e22451
    Assessment of activity levels of radionuclides that exist in soil, granite, and charnockite rock samples is very crucial because it exhibits an enhanced elemental concentration of uranium (U) and thorium (Th) contributing higher natural background activity than usual in the environment and it may cause health risk to human health through the external and internal exposure. This study determined the radioactivity levels of 238U, 232Th, and 40K radionuclides in soil, granite, and charnockite rock samples collected from selected fields in Ekiti State, Nigeria using Caesium iodide CsI(Tl) scintillation gamma spectrometer. It also evaluated indices of the radiological parameters consisting of radium equivalent activity (Raeq), absorbed dose rate (DR), annual effective dose equivalent (AEDE), internal hazard index (Hin), and excess lifetime cancer risk (ELCR). The calculated average activity concentrations of 238U, 232Th, and 40K are 30.40 ± 0.71 Bq kg-1, 3.31 ± 0.05 Bq kg-1, and 222.25 ± 14.72 Bq kg-1, respectively, which were lower than their respective world average values. Comparatively, potassium concentrations in these collected samples have a higher value than concentrations of uranium and thorium (40K > 238U > 232Th). All the evaluated values of the radiological parameters (except DR) of the appraised radionuclides were below the global permissible limits. The granite rocks, charnockite rocks, and soils from Ekiti State in Nigeria do not pose any hazardous risk to humans, but continued monitoring is necessary when these materials are used as building materials, which cause long-term radiation exposure.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links