Novel alginate-arabic gum (AG) gel membrane coated alginate-ghatti gum (GG) modified montmorillonite (MMT) composite matrices were developed for intragastric flurbiprofen (FLU) delivery by combining floating and mucoadhesion mechanisms. The clay-biopolymer composite matrices containing FLU as core were accomplished by ionic-gelation technique. Effects of polymer-blend (alginate:GG) ratios and crosslinker (CaCl2) concentrations on drug entrapment efficiency (DEE, %) and cumulative drug release after 8h (Q8h, %) were studied to optimize the core matrices by a 32factorial design. The optimized matrices (F-O) demonstrated DEE of 91.69±1.43% and Q8hof 74.96±1.56% with minimum errors in prediction. The alginate-AG gel membrane enveloped optimized matrices (F-O, coated) exhibited superior buoyancy, better ex vivo mucoadhesion and slower drug release rate. The drug release profile of FLU-loaded uncoated and coated optimized matrices was best fitted in Korsmeyer-Peppas model with anomalous diffusion and case-II transport driven mechanism, respectively. The uncoated and coated matrices containing FLU were also characterized for drug-excipients compatibility, drug crystallinity, thermal behaviour and surface morphology. Thus, the newly developed alginate-AG gel membrane coated alginate-GG modified MMT composite matrices are appropriate for intragastric delivery of FLU over an extended period of time with improved therapeutic benefits.
Novel alginate-fenugreek gum (FG) gel membrane coated hydroxypropylmethylcellulose (HPMC) based matrix tablets were developed for intragastric quetiapine fumarate (QF) delivery by combining floating and swelling mechanisms. The effects of polymer blend ratios [HPMC K4M:HPMC E15] and citric acid contents on time taken for 50% drug release (t50%, min) and drug release at 8h (Q8h, %) were studied to optimize the core tablets by 3(2) factorial design. The optimized tablets (F-O) exhibited t50% of 247.67±3.51min and Q8h of 71.11±0.32% with minimum errors in prediction. The optimized tablets were coated with Ca(+2) ions crosslinked alginate-FG gel membrane by diffusion-controlled interfacial complexation technique. The biopolymeric-coated optimized matrices exhibited superior buoyancy, preferred swelling characteristics and slower drug release rate. The drug release profiles of the QF-loaded uncoated and coated optimized matrices were best fitted in Korsmeyer-Peppas model with anomalous diffusion driven mechanism. The uncoated and coated tablets containing QF were also characterized for drug-excipients compatibility, thermal behaviour and surface morphology by FTIR, DSC and SEM analyses, respectively. Thus, the newly developed alginate-FG gel membrane coated HPMC matrices are appropriate for intragastric delivery of QF over a prolonged period of time with greater therapeutic benefits.