Displaying all 2 publications

Abstract:
Sort:
  1. Inui T, Hanley B, Tee ES, Nishihira J, Tontisirin K, Van Dael P, et al.
    Nutrients, 2021 Jun 29;13(7).
    PMID: 34209491 DOI: 10.3390/nu13072222
    Life expectancy as a measure of population health does not reflect years of healthy life. The average life expectancy in the Asia-Pacific region has more than doubled since 1900 and is now above 70 years. In the Asia-Pacific region, the proportion of aged people in the population is expected to double between 2017 and 2050. Increased life expectancy leads to an increase in non-communicable diseases, which consequently affects quality of life. Suboptimal nutritional status is a contributing factor to the prevalence and severity of non-communicable diseases, including cardiovascular, cognitive, musculoskeletal, immune, metabolic and ophthalmological functions. We have reviewed the published literature on nutrition and healthy ageing as it applies to the Asia-Pacific region, focusing on vitamins, minerals/trace elements and omega-3 fatty acids. Optimal nutritional status needs to start before a senior age is reached and before the consequences of the disease process are irreversible. Based on the nutritional status and health issues in the senior age in the region, micronutrients of particular importance are vitamins A, D, E, C, B-12, zinc and omega-3 fatty acids. The present paper substantiates the creation of micronutrient guidelines and proposes actions to support the achievement of optimal nutritional status as contribution to healthy ageing for Asia-Pacific populations.
  2. Tsuchida N, Nakashima M, Kato M, Heyman E, Inui T, Haginoya K, et al.
    Clin Genet, 2018 03;93(3):577-587.
    PMID: 28940419 DOI: 10.1111/cge.13144
    Epilepsies are common neurological disorders and genetic factors contribute to their pathogenesis. Copy number variations (CNVs) are increasingly recognized as an important etiology of many human diseases including epilepsy. Whole-exome sequencing (WES) is becoming a standard tool for detecting pathogenic mutations and has recently been applied to detecting CNVs. Here, we analyzed 294 families with epilepsy using WES, and focused on 168 families with no causative single nucleotide variants in known epilepsy-associated genes to further validate CNVs using 2 different CNV detection tools using WES data. We confirmed 18 pathogenic CNVs, and 2 deletions and 2 duplications at chr15q11.2 of clinically unknown significance. Of note, we were able to identify small CNVs less than 10 kb in size, which might be difficult to detect by conventional microarray. We revealed 2 cases with pathogenic CNVs that one of the 2 CNV detection tools failed to find, suggesting that using different CNV tools is recommended to increase diagnostic yield. Considering a relatively high discovery rate of CNVs (18 out of 168 families, 10.7%) and successful detection of CNV with <10 kb in size, CNV detection by WES may be able to surrogate, or at least complement, conventional microarray analysis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links