Displaying all 3 publications

Abstract:
Sort:
  1. Ikram NKK, Kashkooli AB, Peramuna A, Krol ARV, Bouwmeester H, Simonsen HT
    Molecules, 2019 Oct 23;24(21).
    PMID: 31652784 DOI: 10.3390/molecules24213822
    : Metabolic engineering is an integrated bioengineering approach, which has made considerable progress in producing terpenoids in plants and fermentable hosts. Here, the full biosynthetic pathway of artemisinin, originating from Artemisia annua, was integrated into the moss Physcomitrella patens. Different combinations of the five artemisinin biosynthesis genes were ectopically expressed in P. patens to study biosynthesis pathway activity, but also to ensure survival of successful transformants. Transformation of the first pathway gene, ADS, into P. patens resulted in the accumulation of the expected metabolite, amorpha-4,11-diene, and also accumulation of a second product, arteannuin B. This demonstrates the presence of endogenous promiscuous enzyme activity, possibly cytochrome P450s, in P. patens. Introduction of three pathway genes, ADS-CYP71AV1-ADH1 or ADS-DBR2-ALDH1 both led to the accumulation of artemisinin, hinting at the presence of one or more endogenous enzymes in P. patens that can complement the partial pathways to full pathway activity. Transgenic P. patens lines containing the different gene combinations produce artemisinin in varying amounts. The pathway gene expression in the transgenic moss lines correlates well with the chemical profile of pathway products. Moreover, expression of the pathway genes resulted in lipid body formation in all transgenic moss lines, suggesting that these may have a function in sequestration of heterologous metabolites. This work thus provides novel insights into the metabolic response of P. patens and its complementation potential for A. annua artemisinin pathway genes. Identification of the related endogenous P. patens genes could contribute to a further successful metabolic engineering of artemisinin biosynthesis, as well as bioengineering of other high-value terpenoids in P. patens.
  2. Ikram NKK, Zakariya AM, Saiman MZ, Kashkooli AB, Simonsen HT
    Bio Protoc, 2023 Jul 20;13(14):e4719.
    PMID: 37497445 DOI: 10.21769/BioProtoc.4719
    The sesquiterpene lactone compound artemisinin is a natural medicinal product of commercial importance. This Artemisia annua-derived secondary metabolite is well known for its antimalarial activity and has been studied in several other biological assays. However, the major shortcoming in its production and commercialization is its low accumulation in the native plant. Moreover, the chemical synthesis of artemisinin is difficult and expensive due to its complex structure. Hence, an alternative and sustainable production system of artemisinin in a heterologous host is required. Previously, heterologous production of artemisinin was achieved by Agrobacterium-mediated transformation. However, this requires extensive bioengineering of modified Nicotiana plants. Recently, a technique involving direct in vivo assembly of multiple DNA fragments in the moss, P. patens, has been successfully established. We utilized this technique to engineer artemisinin biosynthetic pathway genes into the moss, and artemisinin was obtained without further modifications with high initial production. Here, we provide protocols for establishing moss culture accumulating artemisinin, including culture preparation, transformation method, and compound detection via HS-SPME, UPLC-MRM-MS, and LC-QTOF-MS. The bioengineering of moss opens up a more sustainable, cost effective, and scalable platform not only in artemisinin production but also other high-value specialized metabolites in the future.
  3. Wahyuni DK, Indriati DT, Ilham M, Murtadlo AAA, Purnobasuki H, Junairiah, et al.
    Braz J Biol, 2024;84:e278393.
    PMID: 38422290 DOI: 10.1590/1519-6984.278393
    Artemisia vulgaris L. belongs to Asteraceae, is a herbal plant that has various benefits in the medical field, so that its use in the medical field can be explored optimally, the plant must be thoroughly identified. This study aims to identify A. vulgaris both in terms of descriptive morpho-anatomy and DNA barcoding using BLAST and phylogenetic tree reconstruction. The morpho-anatomical character was observed on root, stem, and leaf. DNA barcoding analysis was carried out through amplification and alignment of the rbcL and matK genes. All studies were conducted on three samples from Taman Husada (Medicinal Plant Garden) Graha Famili Surabaya, Indonesia. The anatomical slide was prepared by the paraffin method. Morphological studies revealed that the leaves of A. vulgaris both on the lower-middle part and on the upper part of the stem have differences, especially in the character of the stipules, petioles, and incisions they have. Meanwhile, from the study of anatomy, A. vulgaris has an anomocytic type of stomata and its distribution is mostly on the ventral part of the leaves. Through the BLAST process and phylogenetic tree reconstruction, the plant sequences being studied are closely related to several species of the genus Artemisia as indicated by a percentage identity above 98% and branch proximity between taxa in the reconstructed phylogenetic tree.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links