The aim of this study is to uncover the multifaceted environmental threats posed by Oil Spill Water Pollution (OSWP) originating from tanker terminals situated in the Qeshm and Hormozgan regions of Iran. In this region, water pollution arises from diverse sources, mostly from ruptured pipelines, corroded valves, unforeseen accidents, and aging facilities. The Qeshm Canal and Qeshm Tanker Terminal emerged as pivotal sites for investigation within this study. The focus is directed towards pinpointing vulnerable areas at risk of water contamination and delving into the intricate pathways and impacts associated with oil spills. Utilizing the sophisticated modeling capabilities of the National Oceanic and Atmospheric Administration's (NOAA) GNOME model, the research explores various scenarios extrapolated from seasonal atmospheric and oceanic data through 2022. The findings show the OSWP hazard zones located northeast of Qeshm. Notably, the wind and currents greatly affect how OSWPs are destined and dispersed. This underscores the intricate interplay between environmental factors and spill dynamics. In essence, this study not only sheds light on the imminent environmental threats posed by OSWP but also underscores the critical need for proactive measures and comprehensive strategies to mitigate the adverse impacts on marine ecosystems and coastal communities.
The impact of global warming presents an increased risk to the world's shorelines. The Intergovernmental Panel on Climate Change (IPCC) reported that the twenty-first century experienced a severe global mean sea-level rise due to human-induced climate change. Therefore, coastal planners require reasonably accurate estimates of the rate of sea-level rise and the potential impacts, including extreme sea-level changes, floods, and shoreline erosion. Also, land loss as a result of disturbance of shoreline is of interest as it damages properties and infrastructure. Using a nonlinear autoregressive network with an exogenous input (NARX) model, this study attempted to simulate (1991 to 2012) and predict (2013-2020) sea-level change along Merang kechil to Kuala Marang in Terengganu state shoreline areas. The simulation results show a rising trend with a maximum rate of 28.73 mm/year and an average of about 8.81 mm/year. In comparison, the prediction results show a rising sea level with a maximum rate of 79.26 mm/year and an average of about 25.34 mm/year. The database generated from this study can be used to inform shoreline defense strategies adapting to sea-level rise, flood, and erosion. Scientists can forecast sea-level increases beyond 2020 using simulated sea-level data up to 2020 and apply it for future research. The data also helps decision-makers choose measures for vulnerable shoreline settlements to adapt to sea-level rise. Notably, the data will provide essential information for policy development and implementation to facilitate operational decision-making processes for coastal cities.
Peninsular Malaysia has gone through fast development during recent decades resulting in the release of large amounts of petroleum and its products into the environment. Aliphatic hydrocarbons are one of the major components of petroleum. Surface sediment samples were collected from five rivers along the west coast of Peninsular Malaysia and analyzed for aliphatic hydrocarbons. The total concentrations of C10 to C36 n-alkanes ranged from 27,945 to 254,463ng·g(-1)dry weight (dw). Evaluation of various n-alkane indices such as carbon preference index (CPI; 0.35 to 3.10) and average chain length (ACL; 26.74 to 29.23) of C25 to C33 n-alkanes indicated a predominance of petrogenic source n-alkanes in the lower parts of the Rivers, while biogenic origin n-alkanes from vascular plants are more predominant in the upper parts, especially in less polluted areas. Petrogenic sources of n-alkanes are predominantly heavy and degraded oil versus fresh oil inputs.
Climate change is a severe global threat. Research on climate change and vulnerability to natural hazards has made significant progress over the last decades. Most of the research has been devoted to improving the quality of climate information and hazard data, including exposure to specific phenomena, such as flooding or sea-level rise. Less attention has been given to the assessment of vulnerability and embedded social, economic and historical conditions that foster vulnerability of societies. A number of global vulnerability assessments based on indicators have been developed over the past years. Yet an essential question remains how to validate those assessments at the global scale. This paper examines different options to validate global vulnerability assessments in terms of their internal and external validity, focusing on two global vulnerability indicator systems used in the WorldRiskIndex and the INFORM index. The paper reviews these global index systems as best practices and at the same time presents new analysis and global results that show linkages between the level of vulnerability and disaster outcomes. Both the review and new analysis support each other and help to communicate the validity and the uncertainty of vulnerability assessments. Next to statistical validation methods, we discuss the importance of the appropriate link between indicators, data and the indicandum. We found that mortality per hazard event from floods, drought and storms is 15 times higher for countries ranked as highly vulnerable compared to those classified as low vulnerable. These findings highlight the different starting points of countries in their move towards climate resilient development. Priority should be given not just to those regions that are likely to face more severe climate hazards in the future but also to those confronted with high vulnerability already.