Displaying all 3 publications

Abstract:
Sort:
  1. Sadia F, Mahmud I, Dhar E, Jahan N, Hossain SS, Zaidi Satter AKM
    Data Brief, 2019 Apr;23:103741.
    PMID: 31372407 DOI: 10.1016/j.dib.2019.103741
    The article identifies the relationship among different agile software development approaches such as response extensiveness, response efficiency, team autonomy, team diversity, and software functionality that software teams face difficult challenges in associating and achieving the right balance between the two agility dimensions. This research strategy, in terms of quantity, is descriptive and correlational. Statistical analysis of the data was carried out, using SmartPLS 3.0. Statistical population, consist of employees of software industries in Bangladesh, who were engaged in 2017 and their total number is about 100 people. The data show that the response extensiveness, response efficiency, team autonomy, team diversity, and software functionality have impact on software development agility and software development performance.
  2. Ng KH, Khan MR, Ng YH, Hossain SS, Cheng CK
    J Environ Manage, 2017 Jul 01;196:674-680.
    PMID: 28365553 DOI: 10.1016/j.jenvman.2017.03.078
    In this study, we have employed a photocatalytic method to restore the liquid effluent from a palm oil mill in Malaysia. Specifically, the performance of both TiO2 and ZnO was compared for the photocatalytic polishing of palm oil mill effluent (POME). The ZnO photocatalyst has irregular shape, bigger in particle size but smaller BET specific surface area (9.71 m2/g) compared to the spherical TiO2 photocatalysts (11.34 m2/g). Both scavenging study and post-reaction FTIR analysis suggest that the degradation of organic pollutant in the TiO2 system has occurred in the bulk solution. In contrast, it is necessary for organic pollutant to adsorb onto the surface of ZnO photocatalyst, before the degradation took place. In addition, the reactivity of both photocatalysts differed in terms of mechanisms, photocatalyst loading and also the density of photocatalysts. From the stability test, TiO2 was found to offer higher stability, as no significant deterioration in activity was observed after three consecutive cycles. On the other hand, ZnO lost around 30% of its activity after the 1st-cycle of photoreaction. The pH studies showed that acidic environment did not improve the photocatalytic degradation of the POME, whilst in the basic environment, the reaction media became cloudy. In addition, longevity study also showed that the TiO2 was a better photocatalyst compared to the ZnO (74.12%), with more than 80.0% organic removal after 22 h of UV irradiation.
  3. Hossain SS, Tarek M, Munusamy TD, Rezaul Karim KM, Roopan SM, Sarkar SM, et al.
    Environ Res, 2020 09;188:109803.
    PMID: 32590149 DOI: 10.1016/j.envres.2020.109803
    In this work, the photocatalytic property of p-type CuO was tailored by creating a heterojunction with n-type CdS. The CuO/CdS nanocomposite photocatalyst was synthesized by the ultrasound-assisted-wet-impregnation method and the physicochemical and optical properties of the catalysts were evaluated by using N2 physisorption, X-Ray Diffraction (XRD),X-Ray Photoelectron Spectroscopy (XPS), Raman spectroscopy, Transmission electron microscopy (TEM), Energy dispersive X-Ray (EDX) mapping, Field Emission Scanning Electron Microscope (FE-SEM), UV-Vis and photoluminescence spectroscopy experiments. Detailed characterization revealed the formation of a nanocomposite with a remarkable improvement in the charge carrier (electron/hole) separation. The photocatalytic degradation efficiencies of CuO and CuO/CdS were investigated for different dyes, for instance, rhodamine B (RhB), methylene blue (MLB), methyl blue (MB) and methyl orange (MO) under visible light irradiation. The obtained dye degradation efficiencies were ~93%, ~75%, ~83% and ~80%, respectively. The quantum yield for RhB degradation under visible light was 6.5 × 10-5. Reusability tests revealed that the CuO/CdS photocatalyst was recyclable up to four times. The possible mechanisms for the photocatalytic dye degradation over CuO/CdS nanocomposite were elucidated by utilizing various scavengers. Through these studies, it can be confirmed that the conduction band edges of CuO and CdS play a significant role in producing O2-. The produced O2- degraded the dye molecules in the bulk solution whereas the valence band position of CuO acted as the water oxidation site. In conclusion, the incorporation of CuO with CdS was demonstrated to be a viable strategy for the efficient photocatalytic degradation of dyes in aqueous solutions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links