Displaying all 9 publications

Abstract:
Sort:
  1. Suhaimi SA, Hong SL, Abdul Malek SN
    Pharmacogn Mag, 2017 Jul;13(Suppl 2):S179-S188.
    PMID: 28808378 DOI: 10.4103/pm.pm_432_16
    BACKGROUND: Ruta angustifolia Pers. is a perennial herb that is cultivated worldwide, including Southeast Asia, for the treatment of various diseases as traditional medicine.

    OBJECTIVE: The purpose of the study was to identify an active principle of R. angustifolia and to investigate its effect on the HT29 cell death.

    MATERIALS AND METHODS: The methanol and fractionated extracts (hexane, chloroform, ethyl acetate, and water) of R. angustifolia Pers. were initially investigated for their cytotoxic activity against two human carcinoma cell lines (MCF7 and HT29) and a normal human colon fibroblast cell line (CCD-18Co) using sulforhodamine B cytotoxicity assay. Eight compounds including rutamarin were isolated from the active chloroform extract and evaluated for their cytotoxic activity against HT29 human colon carcinoma cell line and CCD-18Co noncancer cells. Further studies on the induction of apoptosis such as morphological examinations, biochemical analyses, cell cycle analysis, and caspase activation assay were conducted in rutamarin-treated HT29 cells.

    RESULTS: Rutamarin exhibited remarkable cytotoxic activity against HT29 cells (IC50 value of 5.6 μM) but was not toxic to CCD-18Co cells. The morphological and biochemical hallmarks of apoptosis including activation of caspases 3, 8, and 9 were observed in rutamarin-treated HT29 cells. These may be associated with cell cycle arrest at the G0/G1 and G2/M checkpoints, which was also observed in HT29 cells.

    CONCLUSIONS: The present study describes rutamarin-induced apoptosis in the HT29 cell line for the first time and suggests that rutamarin has the potential to be developed as an anticancer agent.

    SUMMARY: Rutamarin was cytotoxic to HT29 colon cancer cells but exerted no damage to normal colon cellsRutamarin induced morphological and biochemical hallmarks of apoptosis in HT29 cellsRutamarin induced cell cycle arrest at the G0/G1 and G2/M checkpoints in a dose-dependent manner in HT29 cellsRutamarin activated caspases 3, 8, and 9 in a dose-dependent manner in HT29 cells. Abbreviations used: ACN: Acetonitrile, ANOVA: One-way analysis of variance, BrdU: Bromodeoxyuridine, 13C-NMR: Carbon-13 Nuclear magnetic resonance, CAD: Caspase-activated endonuclease, CCD-18Co: Human colon normal, DLD1: Human Duke's type C colorectal adenocarcinoma, DMRT: Duncan's multiple range test, DMSO: Dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DR4/5: Death receptor 4/5 protein, EMEM: Eagle's minimum essential media, FBS: Fetal bovine serum, FITC Annexin V: Annexin V conjugated with fluorescein isothiocyanate, FITC-DEVD-FMK: Fluorescein isothiocyanate conjugate of caspase inhibitor Asp-Glu-Val-Asp-fluoromethyl ketone, FITC-IETD-FMK: Fluorescein isothiocyanate conjugate of caspase inhibitor Ile-Glu-Thr-Asp-fluoromethyl ketone, FITC-LEHD-FMK: Fluorescein isothiocyanate conjugate of caspase inhibitor Leu-Glu-His-Asp-fluoromethyl ketone, G0: Quiescent phase of cell cycle, G1: Gap 1 phase of cell cycle, G2: Gap 2 phase of cell cycle, GC-MS: Gas chromatography-mass spectrometry, HeLa: Human cervical adenocarcinoma, HPLC: High performance liquid chromatography, HT29: Human colon adenocarcinoma, Huh7.5: Human hepatocellular carcinoma, IC50: Half maximal inhibitory concentration, KSHV: Kaposi's sarcoma-associated herpesvirus, M phase: Mitotic phase of cell cycle, MCF7: Human breast adenocarcinoma, NMR: Nuclear magnetic resonance, PBS: Phosphate-buffered saline, PI: Propidium iodide, RNase: Ribonuclease, rt: Retention time, S phase: Synthesis phase of cell cycle, SD: Standard deviation, SRB: Sulforhodamine B, TCA: Trichloroacetic acid, TLC: Thin layer chromatography, TNF-R1: Tumor necrosis factor receptor 1 protein, TUNEL: Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling, UV: Ultraviolet.

  2. Chew SK, Teoh WH, Hong SL, Yusoff R
    Heliyon, 2023 Oct;9(10):e20260.
    PMID: 37810831 DOI: 10.1016/j.heliyon.2023.e20260
    Green extractive methods accompanied by resource conservation through process optimization are important in working towards sustainable processes. In the present paper, rutin was extracted from the leaf of female Carica papaya Linn using microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), sequential microwave ultrasound-assisted extraction (MUAE), and sequential ultrasound microwave-assisted extraction (UMAE) methods. Subsequently, the effect of extraction parameters on rutin yield were analyzed and compared. In addition, the extraction efficiency and energy consumption of the extraction processes were measured and discussed. In the present study, solid-liquid (S/L) ratio was determined to be the most significant extraction variable. Under optimized conditions, MUAE and UMAE were determined to yield the highest amount of rutin extracted at 18.46 ± 0.64 mg/g and 18.43 ± 0.81 mg/g, respectively. However, MUAE was determined to be the least resource efficient method as it consumed the highest amount of energy due to its relatively long extraction time. UAE was determined to be the most efficient in resource utilization as it required the least amount of energy for every mg/g of yield extracted, while the yield obtained was, nonetheless, comparatively high. The optimal condition obtained for UAE was 20 min of ultrasonic extraction time (TU), 20 % of ethanol mixture concentration (C), 710 μm of particle size (S), and 1:650 wt/wt of solid-liquid (S/L) ratio (R).
  3. Hong GW, Hong SL, Lee GS, Yaacob H, Malek SN
    Asian Pac J Trop Med, 2016 Jan;9(1):8-18.
    PMID: 26851779 DOI: 10.1016/j.apjtm.2015.12.003
    OBJECTIVE: To investigate the cytotoxic activity of the hexane and ethyl acetate extracts of Curcuma mangga rhizomes against human colorectal adenocarcinoma cell lines (HT29).

    METHODS: The cytotoxic activity of the hexane and ethyl acetate extracts of Curcuma mangga rhizomes against human colorectal adenocarcinoma cell lines (HT29) was determined by using the SRB assay.

    RESULTS: The ethyl acetate extract showed a higher cytotoxic effect compared to the hexane extract. Morphological changes of the HT29 cells such as cell shrinkage, membrane blebbling and formation of apoptotic bodies while changes in nuclear morphology like chromatin condensation and nuclear fragmentation were observed. Further evidence of apoptosis in HT29 cells was further supported by the externalization of phosphatidylserine which indicate early sign of apoptosis.

    CONCLUSIONS: The early sign of apoptosis is consistent with the cell cycle arrest at the G0/G1 checkpoint which suggests that the changes on the cell cycle lead to the induction of apoptosis in HT29.

  4. Seow SLS, Hong SL, Lee GS, Malek SNA, Sabaratnam V
    BMC Complement Altern Med, 2017 Jun 24;17(1):334.
    PMID: 28646880 DOI: 10.1186/s12906-017-1837-6
    BACKGROUND: Ginger is a popular spice and food preservative. The rhizomes of the common ginger have been used as traditional medicine to treat various ailments. 6-Shogaol, a pungent compound isolated from the rhizomes of jahe gajah (Zingiber officinale var officinale) has shown numerous pharmacological activities, including neuroprotective and anti-neuroinflammatory activities. The aim of this study was to investigate the potential of 6-shogaol to mimic the neuritogenic activity of nerve growth factor (NGF) in rat pheochromocytoma (PC-12) cells.

    METHODS: The cytotoxic effect of 6-shogaol was determined by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The neuritogenic activity was assessed by neurite outgrowth stimulation assay while the concentration of extracellular NGF in cell culture supernatant was assessed by enzyme-linked immunosorbent assay (ELISA). Involvement of cellular signaling pathways, mitogen-activated protein kinase kinase/extracellular signal-regulated kinase1/2 (MEK/ERK1/2) and phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) in 6-shogaol-stimulated neuritogenesis were examined by using specific pharmacological inhibitors.

    RESULTS: 6-Shogaol (500 ng/ml) induced neuritogenesis that was comparable to NGF (50 ng/ml) and was not cytotoxic towards PC-12 cells. 6-Shogaol induced low level of NGF biosynthesis in PC-12 cells, showing that 6-shogaol stimulated neuritogenesis possibly by inducing NGF biosynthesis, and also acting as a substitute for NGF (NGF mimic) in PC-12 cells. The inhibitors of Trk receptor (K252a), MEK/ERK1/2 (U0126 and PD98059) and PI3K/AKT (LY294002) attenuated the neuritogenic activity of both NGF and 6-shogaol, respectively.

    CONCLUSIONS: The present findings demonstrated that 6-shogaol induced neuritogenic activity in PC-12 cells via the activation MEK/ERK1/2 and PI3K/AKT signaling pathways. This study suggests that 6-shogaol could act as an NGF mimic, which may be beneficial for preventive and therapeutic uses in neurodegenerative diseases.

  5. Abdullah F, Subramanian P, Ibrahim H, Abdul Malek SN, Lee GS, Hong SL
    J Insect Sci, 2015;15(1):175.
    PMID: 25688085 DOI: 10.1093/jisesa/ieu175
    Dual choice bioassays were used to evaluate the antifeedant property of essential oil and methanolic extract of Alpinia galanga (L.) (locally known as lengkuas) against two species of termites, Coptotermes gestroi (Wasmann) and Coptotermes curvignathus (Holmgren) (Isoptera: Rhinotermitidae). A 4-cm-diameter paper disc treated with A. galanga essential oil and another treated with either methanol or hexane as control were placed in a petri dish with 10 termites. Mean consumption of paper discs (miligram) treated with 2,000 ppm of essential oil by C. gestroi was 3.30 ± 0.24 mg and by C. curvignathus was 3.32 ± 0.24 mg. A. galanga essential oil showed significant difference in antifeedant effect, 2,000 ppm of A. galanga essential oil was considered to be the optimum concentration that gave maximum antifeedant effect. The essential oil composition was determined using gas chromatography-mass spectrometry. The major component of the essential oil was 1,8-cineol (61.9%). Antifeedant bioassay using 500 ppm of 1,8-cineol showed significant reduction in paper consumption by both termite species. Thus, the bioactive agent in A. galangal essential oil causing antifeeding activity was identified as 1,8-cineol. Repellent activity shows that 250 ppm of 1,8-cineol caused 50.00 ± 4.47% repellency for C. gestroi, whereas for C. curvignathus 750 ppm of 1,8-cineol was needed to cause similar repellent activity (56.67 ± 3.33%). C. curvignathus is more susceptible compare to C. gestroi in Contact Toxicity study, the lethal dose (LD50) of C. curvignathus was 945 mg/kg, whereas LD50 value for C. gestroi was 1,102 mg/kg. Hence 1,8-cineol may be developed as an alternative control against termite in sustainable agriculture practices.
  6. Phan CW, Lee GS, Hong SL, Wong YT, Brkljača R, Urban S, et al.
    Food Funct, 2014 Dec;5(12):3160-9.
    PMID: 25288148 DOI: 10.1039/c4fo00452c
    Hericium erinaceus (Bull.: Fr.) Pers. is an edible and medicinal mushroom used traditionally to improve memory. In this study, we investigated the neuritogenic effects of hericenones isolated from H. erinaceus and the mechanisms of action involved. H. erinaceus was cultivated and the secondary metabolites were elucidated by high performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR). The secondary metabolites were tested for neurite outgrowth activity (if any). Rat pheochromocytoma (PC12) cells were employed and the nerve growth factor (NGF) level was also determined. The signaling pathways involved in the mushroom-induced neuritogenesis were investigated using several pharmacological inhibitors. Hericenones B-E (1-4), erinacerin A (5) and isohericerin (6) were isolated from the basidiocarps of H. erinaceus. The hericenones did not promote neurite outgrowth but when induced with a low concentration of NGF (5 ng mL(-1)), the neuritogenic activity was comparable to that of the positive control (50 ng mL(-1) of NGF). Hericenone E was able to stimulate NGF secretion which was two-fold higher than that of the positive control. The neuritogenesis process was partially blocked by the tyrosine kinase receptor (Trk) inhibitor, K252a, suggesting that the neuritogenic effect was not solely due to NGF. Hericenone E also increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Taken together, this study suggests that hericenone E potentiated NGF-induced neuritogenesis in PC12 cells via the MEK/ERK and PI3K/Akt pathways.
  7. Hong SL, Lee GS, Syed Abdul Rahman SN, Ahmed Hamdi OA, Awang K, Aznam Nugroho N, et al.
    ScientificWorldJournal, 2014;2014:397430.
    PMID: 25177723 DOI: 10.1155/2014/397430
    Curcuma purpurascens Bl., belonging to the Zingiberaceae family, is known as temu tis in Yogyakarta, Indonesia. In this study, the hydrodistilled dried ground rhizome oil was investigated for its chemical content and antiproliferative activity against selected human carcinoma cell lines (MCF7, Ca Ski, A549, HT29, and HCT116) and a normal human lung fibroblast cell line (MRC5). Results from GC-MS and GC-FID analysis of the rhizome oil of temu tis showed turmerone as the major component, followed by germacrone, ar-turmerone, germacrene-B, and curlone. The rhizome oil of temu tis exhibited strong cytotoxicity against HT29 cells (IC50 value of 4.9 ± 0.4 μg/mL), weak cytotoxicity against A549, Ca Ski, and HCT116 cells (with IC50 values of 46.3 ± 0.7, 32.5 ± 1.1, and 35.0 ± 0.3 μg/mL, resp.), and no inhibitory effect against MCF7 cells. It exhibited mild cytotoxicity against a noncancerous human lung fibroblast cell line (MRC5), with an IC50 value of 25.2 ± 2.7 μg/mL. This is the first report on the chemical composition of this rhizome's oil and its selective antiproliferative effect on HT29. The obtained data provided a basis for further investigation of the mode of cell death.
  8. Malek SN, Lee GS, Hong SL, Yaacob H, Wahab NA, Faizal Weber JF, et al.
    Molecules, 2011 May 31;16(6):4539-48.
    PMID: 21629182 DOI: 10.3390/molecules16064539
    Investigations on the cytotoxic effects of the crude methanol and fractionated extracts (hexane, ethyl acetate) C. mangga against six human cancer cell lines, namely the hormone-dependent breast cell line (MCF-7), nasopharyngeal epidermoid cell line (KB), lung cell line (A549), cervical cell line (Ca Ski), colon cell lines (HCT 116 and HT-29), and one non-cancer human fibroblast cell line (MRC-5) were conducted using an in-vitro neutral red cytotoxicity assay. The crude methanol and fractionated extracts (hexane and ethyl acetate) displayed good cytotoxic effects against MCF-7, KB, A549, Ca Ski and HT-29 cell lines, but exerted no damage on the MRC-5 line. Chemical investigation from the hexane and ethyl acetate fractions resulted in the isolation of seven pure compounds, namely (E)-labda-8(17),12-dien-15,16-dial (1), (E)-15,16-bisnor-labda-8(17),11-dien-13-on (2), zerumin A (3), β-sitosterol, curcumin, demethoxycurcumin and bis-demethoxycurcumin. Compounds 1 and 3 exhibited high cytotoxic effects against all six selected cancer cell lines, while compounds 2 showed no anti-proliferative activity on the tested cell lines. Compound 1 also demonstrated strong cytotoxicity against the normal cell line MRC-5. This paper reports for the first time the cytotoxic activities of C. mangga extracts on KB, A549, Ca Ski, HT-29 and MRC-5, and the occurrence of compound 2 and 3 in C. mangga.
  9. Tay KC, Tan LT, Chan CK, Hong SL, Chan KG, Yap WH, et al.
    Front Pharmacol, 2019;10:820.
    PMID: 31402861 DOI: 10.3389/fphar.2019.00820
    Cancer, a complex yet common disease, is caused by uncontrolled cell division and abnormal cell growth due to a variety of gene mutations. Seeking effective treatments for cancer is a major research focus, as the incidence of cancer is on the rise and drug resistance to existing anti-cancer drugs is major concern. Natural products have the potential to yield unique molecules and combinations of substances that may be effective against cancer with relatively low toxicity/better side effect profile compared to standard anticancer therapy. Drug discovery work with natural products has demonstrated that natural compounds display a wide range of biological activities correlating to anticancer effects. In this review, we discuss formononetin (C16H12O4), which originates mainly from red clovers and the Chinese herb Astragalus membranaceus. The compound comes from a class of 7-hydroisoflavones with a substitution of methoxy group at position 4. Formononetin elicits antitumorigenic properties in vitro and in vivo by modulating numerous signaling pathways to induce cell apoptosis (by intrinsic pathway involving Bax, Bcl-2, and caspase-3 proteins) and cell cycle arrest (by regulating mediators like cyclin A, cyclin B1, and cyclin D1), suppress cell proliferation [by signal transducer and activator of transcription (STAT) activation, phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT), and mitogen-activated protein kinase (MAPK) signaling pathway], and inhibit cell invasion [by regulating growth factors vascular endothelial growth factor (VEGF) and Fibroblast growth factor 2 (FGF2), and matrix metalloproteinase (MMP)-2 and MMP-9 proteins]. Co-treatment with other chemotherapy drugs such as bortezomib, LY2940002, U0126, sunitinib, epirubicin, doxorubicin, temozolomide, and metformin enhances the anticancer potential of both formononetin and the respective drugs through synergistic effect. Compiling the evidence thus far highlights the potential of formononetin to be a promising candidate for chemoprevention and chemotherapy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links