METHODOLOGY: This study was conducted in 2 tertiary centres: Hospital Putrajaya (HPJ) and Hospital Universiti Sains Malaysia (HUSM) from February to May 2020. Muslim T1DM patients between ages 8 to18 who intended to fast during Ramadan were given Ramadan-focused education. CGM iPro2® (Medtronic) was used before and during Ramadan, complemented by finger-prick glucose monitoring or self-monitoring of blood glucose (SMBG).
RESULTS: Of the 32 patients, only 24 (12 female) were analysed. Mean age was 13.6 ± 3.1 years old, mean HbAlc was 9.6 ± 1.9% and mean duration of illness was 5.4 ± 3.4 years. Majority (91.7%) were on multiple dose injections (MDI) while only 8.3% were on continuous subcutaneous insulin infusion (CSII). All fasted in Ramadan without acute complications. Retrospective CGM analysis revealed similar results in time in range (TIR), time in hyperglycaemia and time in hypoglycaemia before and during Ramadan, indicating no increased hypoglycaemic or hyperglycaemic events related to fasting. Glycaemic variability before Ramadan as measured by the LBGI, HBGI and MAG, were similar to values during Ramadan.
CONCLUSION: Ramadan fasting among T1DM children and adolescents, by itself, is not associated with short-term glycaemic deterioration. T1DM youths can fast safely in Ramadan with the provision of focused education and regular SMBG.
METHODS: In this cross-sectional study, interviews and a standardised questionnaire comparing lifestyle changes before and during the lockdown were performed in follow-up clinic visits after the lockdown. Anthropometry measurements and glycated haemoglobin (HbA1c) values were compared 3 months prior and after the lockdown.
RESULTS: Participants were 93 patients with T1DM (11.08 ± 3.47 years) and 30 patients with T2DM (13.81 ± 2.03 years). Male gender, T2DM and pubertal adolescents were found to have a significant deterioration in glycaemic control. A significant increment of HbA1c was observed in patients with T2DM (8.5 ± 0.40 vs 9.9 ± 0.46%), but not in patients with T1DM (8.6 ± 0.28 vs 8.7 ± 0.33%). Contrarily, there was an improved glycaemic control in pre-pubertal T1DM children likely due to parental supervision during home confinement. Weight and BMI SDS increased in T1DM patients but surprisingly reduced in T2DM patients possibly due to worsening diabetes control. Reduced meal frequency mainly due to skipping breakfast, reduced physical activity level scores, increased screen time and sleep duration were observed in both groups.
CONCLUSIONS: Adverse impact on glycaemic control and lifestyle were seen mostly in patients with T2DM and pubertal adolescent boys.
METHODS: A cross-sectional study was conducted from November 2019 to August 2020 on T1DM children between 6 and 18 years old who attended the Paediatric Endocrine Clinic Putrajaya Hospital. Anthropometry and bioelectrical impedance analysis (Inbody 720) were measured to analyse their effects towards glycated haemoglobin (HbA1c) via SPSS 21.
RESULTS: A total of 63 T1DM were recruited with an equal male-to-female ratio. The mean age was 12.4 ± 3.3 years old with a mean HbA1c of 9.8 ± 2.0%. The prevalence of overweight/obese and excessive body fat was 17.5 and 34.9%, respectively. Only 3 (6.8%) fulfilled the metabolic syndrome criteria. The waist circumference had a significant relationship with HbA1c. Every 10 cm increment of waist circumference was predicted to raise HbA1c by 0.8. The odds ratio of having abdominal obesity among T1DM with excessive body fat was 9.3 times.
CONCLUSIONS: Abdominal obesity is significantly associated with a poorer glycaemic control in T1DM children. Monitoring of waist circumference should be considered as part of the routine diabetic care.
Methods: We describe a 22-year-old woman with xanthomatous hypophysitis (XH), its clinical progression over 8 years as well as the treatment effects of prednisolone and azathioprine. Our patient was first referred for severe short stature and delayed puberty at the age of 14 years.
Results: Investigations revealed multiple pituitary deficiencies. Magnetic resonance imaging showed a pituitary mass whereby a partial resection was performed. A full resection was not feasible due to the location of the mass. The histopathologic analysis of the tissue was consistent with XH. The results of secondary workout for neoplasm, infection, autoimmune, and inflammatory disorders were negative. After surgery, a progressive enlargement of the mass was observed. Two courses of prednisolone were administered with a significant reduction in the mass size. Azathioprine was added due to the unsustained effects of prednisolone when tapered off and the concern of steroid toxicity with continued use. No further increase in the mass size was noted after 6 months on azathioprine.
Conclusion: Glucocorticoid and immunotherapy are treatment options for XH; however, more cases are needed to better understand its pathogenesis and clinical progression.
METHODS: A total of 102 school-aged children with obesity (54 girls and 48 boys) aged 8-16 years completed a 16-week school-based lifestyle modification intervention program, MyBFF@school Phase I. The intervention consisted of physical activity, healthy eating promotion, and psychological empowerment. MHO and MUO statuses were defined based on the 2018 consensus-based criteria. Fasting venous blood collection, body composition measurement, clinical assessment and physical fitness testing were conducted at baseline and at the end of week 16.
RESULTS: After the intervention, the CRFs of the children with MUO improved with significant decreases in systolic (p
METHODS: In this study, a cross-sectional design was employed using the baseline data obtained from the My Body Is Fit and Fabulous at school (MyBFF@school) intervention program involving obese school children. Obesity status was defined using the body mass index (BMI) z-score from the World Health Organization (WHO) growth chart. Cardiometabolic risk factors presented in this study included fasting plasma glucose (FPG), triglycerides (TGs), total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), blood pressure, acanthosis nigricans, insulin resistance (IR), and MetS. MetS was defined using the International Diabetes Federation (IDF) 2007 criteria. Descriptive data were presented accordingly. The association between cardiometabolic risk factors, such as obesity status, and acanthosis nigricans with MetS was measured using multivariate logistic regression, which was adjusted for gender, ethnicity, and strata.
RESULTS: Out of 924 children, 38.4% (n = 355) were overweight, 43.6% (n = 403) were obese, and 18% (n = 166) were severely obese. The overall mean age was 9.9 ± 0.8 years. The prevalence of hypertension, high FPG, hypertriglyceridemia, low HDL-C, and the presence of acanthosis nigricans among severely children affected by obesity was 1.8%, 5.4%, 10.2%, 42.8%, and 83.7%, respectively. The prevalence of children affected by obesity who were at risk of MetS in <10-year-old and MetS >10-year-old was observed to be similar at 4.8%. Severely children affected by obesity had higher odds of high FPG [odds ratio (OR) = 3.27; 95% confdence interval (CI) 1.12, 9.55], hypertriglyceridemia (OR = 3.50; 95%CI 1.61, 7.64), low HDL-C (OR = 2.65; 95%CI 1.77, 3.98), acanthosis nigricans (OR = 13.49; 95%CI 8.26, 22.04), IR (OR = 14.35; 95%CI 8.84, 23.30), and MetS (OR = 14.03; 95%CI 3.97, 49.54) compared to overweight and children affected by obesity. The BMI z-score, waist circumference (WC), and percentage body fat showed a significant correlation with triglycerides, HDL-C, the TG: HDL-C ratio, and the homeostatic model assessment for IR (HOMA-IR) index.
CONCLUSIONS: Severely children affected by obesity exhibit a higher prevalence of and are more likely to develop cardiometabolic risk factors compared to overweight and children affected by obesity. This group of children should be monitored closely and screened periodically for obesity-related health problems to institute early and comprehensive intervention.