Displaying all 4 publications

Abstract:
Sort:
  1. Hickey AC, Koster JA, Thalmann CM, Hardcastle K, Tio PH, Cardosa MJ, et al.
    Am J Trop Med Hyg, 2013 Dec;89(6):1043-57.
    PMID: 24062475 DOI: 10.4269/ajtmh.13-0145
    Dengue virus (DENV) is considered to be the most important arthropod-borne viral disease and causes more than 100 million human infections annually. To further characterize primary DENV infection in vivo, rhesus macaques were infected with DENV-1, DENV-2, DENV-3, or DENV-4 and clinical parameters, as well as specificity and longevity of serologic responses, were assessed. Overt clinical symptoms were not present after infection. However, abnormalities in blood biochemical parameters consistent with heart, kidney, and liver damage were observed, and changes in plasma fibrinogen, D-dimers, and protein C indicated systemic activation of the blood coagulation pathway. Significant homotypic and heterotypic serum immunoglobulins were present in all animals, and IgG persisted for at least 390 days. Serum neutralizing antibody responses were highly serotype specific by day 120. However, some heterotypic neutralizing activity was noted in infected animals. Identification of serotype-specific host responses may help elucidate mechanisms that mediate severe DENV disease after reinfection.
  2. Lim PY, Hickey AC, Jamiluddin MF, Hamid S, Kramer J, Santos R, et al.
    Vaccine, 2015 Nov 4;33(44):6017-24.
    PMID: 26271825 DOI: 10.1016/j.vaccine.2015.05.108
    A vaccine against human enterovirus 71 (EV-A71) is urgently needed to combat outbreaks of EV-A71 and in particular, the serious neurological complications that manifest during these outbreaks. In this study, an EV-A71 virus-like-particle (VLP) based on a B5 subgenogroup (EV-A71-B5 VLP) was generated using an insect cell/baculovirus platform. Biochemical analysis demonstrated that the purified VLP had a highly native procapsid structure and initial studies in vivo demonstrated that the VLPs were immunogenic in mice. The impact of VLP immunization on infection was examined in non-human primates using a VLP prime-boost strategy prior to EV-A71 challenge. Rhesus macaques were immunized on day 0 and day 21 with VLPs (100 μg/dose) containing adjuvant or with adjuvant alone (controls), and were challenged with EV-A71 on day 42. Complete blood counts, serum chemistry, magnetic resonance imaging (MRI) scans, and histopathology results were mostly normal in vaccinated and control animals after virus challenge demonstrating that the fatal EV-A71-B3 clinical isolate used in this study was not highly virulent in rhesus macaques. Viral genome and/or infectious virus were detected in blood, spleen or brain of two of three control animals, but not in any specimens from the vaccinated animals, indicating that VLP immunization prevented systemic spread of EV-A71 in rhesus macaques. High levels of IgM and IgG were detected in VLP-vaccinated animals and these responses were highly specific for EV-A71 particles and capsid proteins. Serum from vaccinated animals also exhibited similar neutralizing activity against different subgenogroups of EV-A71 demonstrating that the VLPs induced cross-neutralizing antibodies. In conclusion, our EV-A71-B5 VLP is safe, highly immunogenic, and prevents systemic EV-A71-B3 infection in nonhuman primates making it a viable attractive vaccine candidate for EV-A71.
  3. Bossart KN, Rockx B, Feldmann F, Brining D, Scott D, LaCasse R, et al.
    Sci Transl Med, 2012 Aug 08;4(146):146ra107.
    PMID: 22875827 DOI: 10.1126/scitranslmed.3004241
    In the 1990s, Hendra virus and Nipah virus (NiV), two closely related and previously unrecognized paramyxoviruses that cause severe disease and death in humans and a variety of animals, were discovered in Australia and Malaysia, respectively. Outbreaks of disease have occurred nearly every year since NiV was first discovered, with case fatality ranging from 10 to 100%. In the African green monkey (AGM), NiV causes a severe lethal respiratory and/or neurological disease that essentially mirrors fatal human disease. Thus, the AGM represents a reliable disease model for vaccine and therapeutic efficacy testing. We show that vaccination of AGMs with a recombinant subunit vaccine based on the henipavirus attachment G glycoprotein affords complete protection against subsequent NiV infection with no evidence of clinical disease, virus replication, or pathology observed in any challenged subjects. Success of the recombinant subunit vaccine in nonhuman primates provides crucial data in supporting its further preclinical development for potential human use.
  4. Wei F, Gaisa MM, D'Souza G, Xia N, Giuliano AR, Hawes SE, et al.
    Lancet HIV, 2021 Sep;8(9):e531-e543.
    PMID: 34339628 DOI: 10.1016/S2352-3018(21)00108-9
    BACKGROUND: Robust age-specific estimates of anal human papillomavirus (HPV) and high-grade squamous intraepithelial lesions (HSIL) in men can inform anal cancer prevention efforts. We aimed to evaluate the age-specific prevalence of anal HPV, HSIL, and their combination, in men, stratified by HIV status and sexuality.

    METHODS: We did a systematic review for studies on anal HPV infection in men and a pooled analysis of individual-level data from eligible studies across four groups: HIV-positive men who have sex with men (MSM), HIV-negative MSM, HIV-positive men who have sex with women (MSW), and HIV-negative MSW. Studies were required to inform on type-specific HPV infection (at least HPV16), detected by use of a PCR-based test from anal swabs, HIV status, sexuality (MSM, including those who have sex with men only or also with women, or MSW), and age. Authors of eligible studies with a sample size of 200 participants or more were invited to share deidentified individual-level data on the above four variables. Authors of studies including 40 or more HIV-positive MSW or 40 or more men from Africa (irrespective of HIV status and sexuality) were also invited to share these data. Pooled estimates of anal high-risk HPV (HR-HPV, including HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68), and HSIL or worse (HSIL+), were compared by use of adjusted prevalence ratios (aPRs) from generalised linear models.

    FINDINGS: The systematic review identified 93 eligible studies, of which 64 contributed data on 29 900 men to the pooled analysis. Among HIV-negative MSW anal HPV16 prevalence was 1·8% (91 of 5190) and HR-HPV prevalence was 6·9% (345 of 5003); among HIV-positive MSW the prevalences were 8·7% (59 of 682) and 26·9% (179 of 666); among HIV-negative MSM they were 13·7% (1455 of 10 617) and 41·2% (3798 of 9215), and among HIV-positive MSM 28·5% (3819 of 13 411) and 74·3% (8765 of 11 803). In HIV-positive MSM, HPV16 prevalence was 5·6% (two of 36) among those age 15-18 years and 28·8% (141 of 490) among those age 23-24 years (ptrend=0·0091); prevalence was 31·7% (1057 of 3337) among those age 25-34 years and 22·8% (451 of 1979) among those age 55 and older (ptrend<0·0001). HPV16 prevalence in HIV-negative MSM was 6·7% (15 of 223) among those age 15-18 and 13·9% (166 of 1192) among those age 23-24 years (ptrend=0·0076); the prevalence plateaued thereafter (ptrend=0·72). Similar age-specific patterns were observed for HR-HPV. No significant differences for HPV16 or HR-HPV were found by age for either HIV-positive or HIV-negative MSW. HSIL+ detection ranged from 7·5% (12 of 160) to 54·5% (61 of 112) in HIV-positive MSM; after adjustment for heterogeneity, HIV was a significant predictor of HSIL+ (aPR 1·54, 95% CI 1·36-1·73), HPV16-positive HSIL+ (1·66, 1·36-2·03), and HSIL+ in HPV16-positive MSM (1·19, 1·04-1·37). Among HPV16-positive MSM, HSIL+ prevalence increased with age.

    INTERPRETATION: High anal HPV prevalence among young HIV-positive and HIV-negative MSM highlights the benefits of gender-neutral HPV vaccination before sexual activity over catch-up vaccination. HIV-positive MSM are a priority for anal cancer screening research and initiatives targeting HPV16-positive HSIL+.

    FUNDING: International Agency for Research on Cancer.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links