Displaying all 4 publications

Abstract:
Sort:
  1. Ling KH, Hewitt CA, Tan KL, Cheah PS, Vidyadaran S, Lai MI, et al.
    BMC Genomics, 2014;15:624.
    PMID: 25052193 DOI: 10.1186/1471-2164-15-624
    The Ts1Cje mouse model of Down syndrome (DS) has partial triplication of mouse chromosome 16 (MMU16), which is partially homologous to human chromosome 21. These mice develop various neuropathological features identified in DS individuals. We analysed the effect of partial triplication of the MMU16 segment on global gene expression in the cerebral cortex, cerebellum and hippocampus of Ts1Cje mice at 4 time-points: postnatal day (P)1, P15, P30 and P84.
  2. Tan KL, Ling KH, Hewitt CA, Cheah PS, Simpson K, Gordon L, et al.
    Genom Data, 2014 Dec;2:314-7.
    PMID: 26484118 DOI: 10.1016/j.gdata.2014.09.009
    The Ts1Cje mouse model of Down syndrome (DS) has partial trisomy of mouse chromosome 16 (MMU16), which is syntenic to human chromosome 21 (HSA21). It develops various neuropathological features demonstrated by DS patients such as reduced cerebellar volume [1] and altered hippocampus-dependent learning and memory [2,3]. To understand the global gene expression effect of the partially triplicated MMU16 segment on mouse brain development, we performed the spatiotemporal transcriptome analysis of Ts1Cje and disomic control cerebral cortex, cerebellum and hippocampus harvested at four developmental time-points: postnatal day (P)1, P15, P30 and P84. Here, we provide a detailed description of the experimental and analysis procedures of the microarray dataset, which has been deposited in the Gene Expression Omnibus (GSE49050) database.
  3. Lee HC, Md Yusof HH, Leong MP, Zainal Abidin S, Seth EA, Hewitt CA, et al.
    Int J Neurosci, 2019 Sep;129(9):871-881.
    PMID: 30775947 DOI: 10.1080/00207454.2019.1580280
    Aims: The JAK-STAT signalling pathway is one of the key regulators of pro-gliogenesis process during brain development. Down syndrome (DS) individuals, as well as DS mouse models, exhibit an increased number of astrocytes, suggesting an imbalance of neurogenic-to-gliogenic shift attributed to dysregulated JAK-STAT signalling pathway. The gene and protein expression profiles of JAK-STAT pathway members have not been characterised in the DS models. Therefore, we aimed to profile the expression of Jak1, Jak2, Stat1, Stat3 and Stat6 at different stages of brain development in the Ts1Cje mouse model of DS. Methods: Whole brain samples from Ts1Cje and wild-type mice at embryonic day (E)10.5, E15, postnatal day (P)1.5; and embryonic cortex-derived neurospheres were collected for gene and protein expression analysis. Gene expression profiles of three brain regions (cerebral cortex, cerebellum and hippocampus) from Ts1Cje and wild-type mice across four time-points (P1.5, P15, P30 and P84) were also analysed. Results: In the developing mouse brain, none of the Jak/Stat genes were differentially expressed in the Ts1Cje model compared to wild-type mice. However, Western blot analyses indicated that phosphorylated (p)-Jak2, p-Stat3 and p-Stat6 were downregulated in the Ts1Cje model. During the postnatal brain development, Jak/Stat genes showed complex expression patterns, as most of the members were downregulated at different selected time-points. Notably, embryonic cortex-derived neurospheres from Ts1Cje mouse brain expressed lower Stat3 and Stat6 protein compared to the wild-type group. Conclusion: The comprehensive expression profiling of Jak/Stat candidates provides insights on the potential role of the JAK-STAT signalling pathway during abnormal development of the Ts1Cje mouse brains.
  4. Yusof HH, Lee HC, Seth EA, Wu X, Hewitt CA, Scott HS, et al.
    J Mol Neurosci, 2019 Apr;67(4):632-642.
    PMID: 30758748 DOI: 10.1007/s12031-019-01275-2
    Notch signalling pathway is involved in the proliferation of neural progenitor cells (NPCs), to inhibit neuronal cell commitment and to promote glial cell fate. Notch protein is cleaved by gamma-secretase, a multisubunit transmembrane protein complex that releases the Notch intracellular domain (NICD) and subsequently activates the downstream targets. Down syndrome (DS) individuals exhibit an increased number of glial cells (particularly astrocytes), and reduced number of neurons suggesting the involvement of Notch signalling pathway in the neurogenic-to-gliogenic shift in DS brain. Ts1Cje is a DS mouse model that exhibit similar neuropathology to human DS individuals. To date, the spatiotemporal gene expression of the Notch and gamma-secretase genes have not been characterised in Ts1Cje mouse brain. Understanding the expression pattern of Notch and gamma-secretase genes may provide a better understanding of the underlying mechanism that leads to the shift. Gene expression analysis using RT-qPCR was performed on early embryonic and postnatal development of DS brain. In the developing mouse brain, mRNA expression analysis showed that gamma-secretase members (Psen1, Pen-2, Aph-1b, and Ncstn) were not differentially expressed. Notch2 was found to be downregulated in the developing Ts1Cje brain samples. Postnatal gene expression study showed complex expression patterns and Notch1 and Notch2 genes were found to be significantly downregulated in the hippocampus at postnatal day 30. Results from RT-qPCR analysis from E15.5 neurosphere culture showed an increase of expression of Psen1, and Aph-1b but downregulation of Pen-2 and Ncstn genes. Gamma-secretase activity in Ts1Cje E15.5 neurospheres was significantly increased by fivefold. In summary, the association and the role of Notch and gamma-secretase gene expression throughout development with neurogenic-to-gliogenic shift in Ts1Cje remain undefined and warrant further validation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links