Displaying all 2 publications

Abstract:
Sort:
  1. Halim-Fikri H, Syed-Hassan SR, Wan-Juhari WK, Assyuhada MGSN, Hernaningsih Y, Yusoff NM, et al.
    Asian Biomed (Res Rev News), 2022 Dec;16(6):285-298.
    PMID: 37551357 DOI: 10.2478/abm-2022-0032
    Rapid technological advancement in high-throughput genomics, microarray, and deep sequencing technologies has accelerated the possibility of more complex precision medicine research using large amounts of heterogeneous health-related data from patients, including genomic variants. Genomic variants can be identified and annotated based on the reference human genome either within the sequence as a whole or in a putative functional genomic element. The American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) mutually created standards and guidelines for the appraisal of proof to expand consistency and straightforwardness in clinical variation interpretations. Various efforts toward precision medicine have been facilitated by many national and international public databases that classify and annotate genomic variation. In the present study, several resources are highlighted with recognition and data spreading of clinically important genetic variations.
  2. Halim-Fikri H, Zulkipli NN, Alauddin H, Bento C, Lederer CW, Kountouris P, et al.
    Database (Oxford), 2024 Sep 04;2024.
    PMID: 39231257 DOI: 10.1093/database/baae080
    Thalassemia is one of the most prevalent monogenic disorders in low- and middle-income countries (LMICs). There are an estimated 270 million carriers of hemoglobinopathies (abnormal hemoglobins and/or thalassemia) worldwide, necessitating global methods and solutions for effective and optimal therapy. LMICs are disproportionately impacted by thalassemia, and due to disparities in genomics awareness and diagnostic resources, certain LMICs lag behind high-income countries (HICs). This spurred the establishment of the Global Globin Network (GGN) in 2015 at UNESCO, Paris, as a project-wide endeavor within the Human Variome Project (HVP). Primarily aimed at enhancing thalassemia clinical services, research, and genomic diagnostic capabilities with a focus on LMIC needs, GGN aims to foster data collection in a shared database by all affected nations, thus improving data sharing and thalassemia management. In this paper, we propose a minimum requirement for establishing a genomic database in thalassemia based on the HVP database guidelines. We suggest using an existing platform recommended by HVP, the Leiden Open Variation Database (LOVD) (https://www.lovd.nl/). Adoption of our proposed criteria will assist in improving or supplementing the existing databases, allowing for better-quality services for individuals with thalassemia. Database URL: https://www.lovd.nl/.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links