OBJECTIVE: This study aimed to estimate and critically appraise the evidence on the prevalence, causes and severity of medication administration errors (MAEs) amongst neonates in Neonatal Intensive Care Units (NICUs).
METHODS: A systematic review and meta-analysis was conducted by searching nine electronic databases and the grey literature for studies, without language and publication date restrictions. The pooled prevalence of MAEs was estimated using a random-effects model. Data on error causation were synthesised using Reason's model of accident causation.
RESULTS: Twenty unique studies were included. Amongst direct observation studies reporting total opportunity for errors as the denominator for MAEs, the pooled prevalence was 59.3% (95% confidence interval [CI] 35.4-81.3, I2 = 99.5%). Whereas, the non-direct observation studies reporting medication error reports as the denominator yielded a pooled prevalence of 64.8% (95% CI 46.6-81.1, I2 = 98.2%). The common reported causes were error-provoking environments (five studies), while active failures were reported by three studies. Only three studies examined the severity of MAEs, and each utilised a different method of assessment.
CONCLUSIONS: This is the first comprehensive systematic review and meta-analysis estimating the prevalence, causes and severity of MAEs amongst neonates. There is a need to improve the quality and reporting of studies to produce a better estimate of the prevalence of MAEs amongst neonates. Important targets such as wrong administration-technique, wrong drug-preparation and wrong time errors have been identified to guide the implementation of remedial measures.
METHODS AND ANALYSIS: This is a prospective direct observational study that will be conducted in five neonatal intensive care units. A minimum sample size of 820 drug preparations and administrations will be observed. Data including patient characteristics, drug preparation-related and administration-related information and other procedures will be recorded. After each round of observation, the observers will compare his/her observations with the prescriber's medication order, hospital policies and manufacturer's recommendations to determine whether MAE has occurred. To ensure reliability, the error identification will be independently performed by two clinical pharmacists after the completion of data collection for all study sites. Any disagreements will be discussed with the research team for consensus. To reduce overfitting and improve the quality of risk predictions, we have prespecified a priori the analytical plan, that is, prespecifying the candidate predictor variables, handling missing data and validation of the developed model. The model's performance will also be assessed. Finally, various modes of presentation formats such as a simplified scoring tool or web-based electronic risk calculators will be considered.
METHODS: This national-level, multicentre, prospective direct observational study was conducted in neonatal intensive care units (NICUs) of five public hospitals in Malaysia. Randomly selected nurses were directly observed during medication preparation and administration. Each observation was independently assessed for errors. Ten machine learning (ML) algorithms were applied with features derived from systematic reviews, incident reports, and expert consensus. Model performance, prioritising F1-score for MAEs, was evaluated using various measures. Feature importance was determined using the permutation-feature importance for robust comparison across ML algorithms.
RESULTS: A total of 1093 doses were administered to 170 neonates, with mean age and birth weight of 33.43 (SD ± 5.13) weeks and 1.94 (SD ± 0.95) kg, respectively. F1-scores for the ten models ranged from 76.15% to 83.28%. Adaptive boosting (AdaBoost) emerged as the best-performing model (F1-score: 83.28%, accuracy: 77.63%, area under the receiver operating characteristic: 82.95%, precision: 84.72%, sensitivity: 81.88% and negative predictive value: 64.00%). The most influential features in AdaBoost were the intravenous route of administration, working hours, and nursing experience.
CONCLUSIONS: This study developed and validated an ML-based model to predict the presence of MAEs among neonates in NICUs. AdaBoost was identified as the best-performing algorithm. Utilising the model's predictions, healthcare providers can potentially reduce MAE occurrence through timely interventions.