Displaying all 4 publications

Abstract:
Sort:
  1. Adam IK, Heikal M, Aziz ARA, Yusup S
    Environ Sci Pollut Res Int, 2018 Oct;25(28):28500-28516.
    PMID: 30088249 DOI: 10.1007/s11356-018-2863-8
    The present work analyzes the effect of antioxidants on engine combustion performance of a multi-cylinder diesel engine fueled with PB30 and PB50 (30 and 50 vol.% palm biodiesel (PB)). Four antioxidants namely N,N'-diphenyl-1,4-phenylenediamine (DPPD), N-phenyl-1,4-phenylenediamine (NPPD), 2(3)-tert-Butyl-4-methoxyphenol (BHA), and 2-tert-butylbenzene-1,4-diol (TBHQ) were added at concentrations of 1000 and 2000 ppm to PB30 and PB50. TBHQ showed the highest activity in increasing oxidation stability in both PB30 and PB50 followed by BHA, DPPD, and NPPD respectively, without any negative effect on physical properties. Compared to diesel fuel, PB blends showed 4.61-6.45% lower brake power (BP), 5.90-8.69% higher brake specific fuel consumption (BSFC), 9.64-11.43% higher maximum in cylinder pressure, and 7.76-12.51% higher NO emissions. Carbon monoxide (CO), hydrocarbon (HC), and smoke opacity were reduced by 36.78-43.56%, 44.12-58.21%, and 42.59-63.94%, respectively, than diesel fuel. The start of combustion angles (SOC) of PB blends was - 13.2 to - 15.6 °CA BTDC, but the combustion delays were 5.4-7.8 °CA short compared to diesel fuel which were - 10 °CA BTDC and 11°CA respectively. Antioxidant fuels of PB showed higher BP (1.81-5.32%), CO (8.41-24.60%), and HC (13.51-37.35%) with lower BSFC (1.67-7.68%), NO (4.32-11.53%), maximum in cylinder pressure (2.33-4.91%) and peak heat release rates (HRR) (3.25-11.41%) than baseline fuel of PB. Similar SOC of - 13 to - 14 °CA BTDC was observed for PB blended fuels and antioxidants. It can be concluded that antioxidants' addition is effective in increasing the oxidation stability and in controlling the NOx emissions of palm biodiesel fuelled diesel engine.
  2. Ruszymah BH, Izham BA, Heikal MY, Khor SF, Fauzi MB, Aminuddin BS
    Med J Malaysia, 2011 Dec;66(5):440-2.
    PMID: 22390097 MyJurnal
    Current development in the field of tissue engineering led to the idea of repairing and regenerating the respiratory airway through in vitro reconstruction using autologous respiratory epithelial (RE). To ensure the capability of proliferation, the stem cell property of RE cells from the nasal turbinate should be evaluated. Respiratory epithelial cells from six human nasal turbinates were harvested and cultured in vitro. The gene expression of FZD-9 and BST-1 were expressed in passage 2 (P2) and passage 4 (P4). The levels of expression were not significant between both passages. The RE cells exhibit the stem cell properties, which remains even after serial passaging.
  3. Mohd Heikal MY, Aminuddin BS, Jeevanan J, Chen HC, Sharifah SH, Ruszymah BH
    Cells Tissues Organs (Print), 2010;192(5):292-302.
    PMID: 20616535 DOI: 10.1159/000318675
    The objective of this study was to regenerate the tracheal epithelium using autologous nasal respiratory epithelial cells in a sheep model. Respiratory epithelium and fibroblast cells were harvested from nasal turbinates and cultured for 1 week. After confluence, respiratory epithelium and fibroblast cells were suspended in autologous fibrin polymerized separately to form a tissue-engineered respiratory epithelial construct (TEREC). A 3 × 2 cm² tracheal mucosal defect was created, and implanted with TEREC and titanium mesh as a temporary scaffold. The control groups were divided into 2 groups: polymerized autologous fibrin devoid of cells (group 1), and no construct implanted (group 2). All sheep were euthanized at 4 weeks of implantation. Gross observation of the trachea showed minimal luminal stenosis formation in the experimental group compared to the control groups. Macroscopic evaluation revealed significant mucosal fibrosis in control group 1 (71.8%) as compared to the experimental group (7%). Hematoxylin and eosin staining revealed the presence of minimal overgrowth of fibrous connective tissue covered by respiratory epithelium. A positive red fluorescence staining of PKH26 on engineered tissue 4 weeks after implantation confirmed the presence of cultured nasal respiratory epithelial cells intercalated with native tracheal epithelial cells. Scanning electron microscopy showed the presence of short microvilli representing immature cilia on the surface of the epithelium. Our study showed that TEREC was a good replacement for a tracheal mucosal defect and was able to promote natural regenesis of the tracheal epithelium with minimal fibrosis. This study highlighted a new technique in the treatment of tracheal stenosis.
  4. Heikal MY, Aminuddin BS, Jeevanan J, Chen HC, Sharifah S, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:34.
    PMID: 19024970
    Normal tracheal mucociliary clearance is the key to maintaining the health and defense of respiratory airway. Therefore the present of cilia and mucous blanket are important for tracheal epithelium to function effectively. In the present study, we prepared a tissue engineered respiratory epithelium construct (TEREC) made of autologous respiratory epithelium cells, fibroblast and fibrin from sheep owns blood which replaced a created tracheal mucosal defect. Scanning electron microscopy (SEM) showed encouraging result where immature cilia were present on the surface of TEREC. This result indicates that engineered respiratory epithelium was able to function as normal tissue.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links