Displaying all 4 publications

Abstract:
Sort:
  1. Tao H, Hashim BM, Heddam S, Goliatt L, Tan ML, Sa'adi Z, et al.
    Environ Sci Pollut Res Int, 2023 Mar;30(11):30984-31034.
    PMID: 36441299 DOI: 10.1007/s11356-022-24153-8
    Urban areas are quickly established, and the overwhelming population pressure is triggering heat stress in the metropolitan cities. Climate change impact is the key aspect for maintaining the urban areas and building proper urban planning because spreading of the urban area destroyed the vegetated land and increased heat variation. Remote sensing-based on Landsat images are used for investigating the vegetation circumstances, thermal variation, urban expansion, and surface urban heat island or SUHI in the three megacities of Iraq like Baghdad, Erbil, and Basrah. Four satellite imageries are used aimed at land use and land cover (LULC) study from 1990 to 2020, which indicate the land transformation of those three major cities in Iraq. The average annually temperature is increased during  30 years like Baghdad (0.16 °C), Basrah (0.44 °C), and Erbil (0.32 °C). The built-up area is increased 147.1 km2 (Erbil), 217.86 km2 (Baghdad), and 294.43 km2 (Erbil), which indicated the SUHI affects the entire area of the three cities. The bare land is increased in Baghdad city, which indicated the local climatic condition and affected the livelihood. Basrah City is affected by anthropogenic activities and most areas of Basrah were converted into built-up land in the last 30 years. In Erbil, agricultural land (295.81 km2) is increased. The SUHI study results indicated the climate change effect in those three cities in Iraq. This study's results are more useful for planning, management, and sustainable development of urban areas.
  2. Sa'adi Z, Al-Suwaiyan MS, Yaseen ZM, Tan ML, Goliatt L, Heddam S, et al.
    J Environ Manage, 2024 May 11;360:121087.
    PMID: 38735071 DOI: 10.1016/j.jenvman.2024.121087
    Climate change has significantly altered the characteristics of climate zones, posing considerable challenges to ecosystems and biodiversity, particularly in Borneo, known for its high species density per unit area. This study aimed to classify the region into homogeneous climate groups based on long-term average behavior. The most effective parameters from the high-resolution daily gridded Princeton climate datasets spanning 65 years (1950-2014) were utilized, including rainfall, relative humidity (RH), temperatures (Tavg, Tmin, Tmax, and diurnal temperature range (DTR)), along with elevation data at 0.25° resolution. The FCM clustering method outperformed K-Mean and two Ward's hierarchical methods (WardD and WardD2) in classifying Borneo's climate zones based on multi-criteria assessment, exhibiting the lowest average distance (2.172-2.180) and the highest compromise programming index (CPI)-based correlation ranking among cluster averages across all climate parameters. Borneo's climate zones were categorized into four: 'Wet and cold' (WC) and 'Wet' (W) representing wetter zones, and 'Wet and hot' (WH) and 'Dry and hot' (DH) representing hotter zones, each with clearly defined boundaries. For future projection, EC-Earth3-Veg ranked first for all climate parameters across 961 grid points, emerging as the top-performing model. The linear scaling (LS) bias-corrected EC-Earth3-Veg model, as shown in the Taylor diagram, closely replicated the observed datasets, facilitating future climate zone reclassification. Improved performance across parameters was evident based on MAE (35.8-94.6%), MSE (57.0-99.5%), NRMSE (42.7-92.1%), PBIAS (100-108%), MD (23.0-85.3%), KGE (21.1-78.1%), and VE (5.1-9.1%), with closer replication of empirical probability distribution function (PDF) curves during the validation period. In the future, Borneo's climate zones will shift notably, with WC elongating southward along the mountainous spine, W forming an enclave over the north-central mountains, WH shifting northward and shrinking inland, and DH expanding northward along the western coast. Under SSP5-8.5, WC is expected to expand by 39% and 11% for the mid- and far-future periods, respectively, while W is set to shrink by 46%. WH is projected to expand by 2% and 8% for the mid- and far-future periods, respectively. Conversely, DH is expected to expand by 43% for the far-future period but shrink by 42% for the mid-future period. This study fills a gap by redefining Borneo's climate zones based on an increased number of effective parameters and projecting future shifts, utilizing advanced clustering methods (FCM) under CMIP6 scenarios. Importantly, it contributes by ranking GCMs using RIMs and CPI across multiple climate parameters, addressing a previous gap in GCM assessment. The study's findings can facilitate cross-border collaboration by providing a shared understanding of climate dynamics and informing joint environmental management and disaster response efforts.
  3. Halder B, Ahmadianfar I, Heddam S, Mussa ZH, Goliatt L, Tan ML, et al.
    Sci Rep, 2023 May 17;13(1):7968.
    PMID: 37198391 DOI: 10.1038/s41598-023-34774-9
    Climatic condition is triggering human health emergencies and earth's surface changes. Anthropogenic activities, such as built-up expansion, transportation development, industrial works, and some extreme phases, are the main reason for climate change and global warming. Air pollutants are increased gradually due to anthropogenic activities and triggering the earth's health. Nitrogen Dioxide (NO2), Carbon Monoxide (CO), and Aerosol Optical Depth (AOD) are truthfully important for air quality measurement because those air pollutants are more harmful to the environment and human's health. Earth observational Sentinel-5P is applied for monitoring the air pollutant and chemical conditions in the atmosphere from 2018 to 2021. The cloud computing-based Google Earth Engine (GEE) platform is applied for monitoring those air pollutants and chemical components in the atmosphere. The NO2 variation indicates high during the time because of the anthropogenic activities. Carbon Monoxide (CO) is also located high between two 1-month different maps. The 2020 and 2021 results indicate AQI change is high where 2018 and 2019 indicates low AQI throughout the year. The Kolkata have seven AQI monitoring station where high nitrogen dioxide recorded 102 (2018), 48 (2019), 26 (2020) and 98 (2021), where Delhi AQI stations recorded 99 (2018), 49 (2019), 37 (2020), and 107 (2021). Delhi, Kolkata, Mumbai, Pune, and Chennai recorded huge fluctuations of air pollutants during the study periods, where ~ 50-60% NO2 was recorded as high in the recent time. The AOD was noticed high in Uttar Pradesh in 2020. These results indicate that air pollutant investigation is much necessary for future planning and management otherwise; our planet earth is mostly affected by the anthropogenic and climatic conditions where maybe life does not exist.
  4. Hai T, Ahmadianfar I, Halder B, Heddam S, Al-Areeq AM, Demir V, et al.
    PMID: 38653893 DOI: 10.1007/s11356-024-33027-0
    River water quality management and monitoring are essential responsibilities for communities near rivers. Government decision-makers should monitor important quality factors like temperature, dissolved oxygen (DO), pH, and biochemical oxygen demand (BOD). Among water quality parameters, the BOD throughout 5 days is an important index that must be detected by devoting a significant amount of time and effort, which is a source of significant concern in both academic and commercial settings. The traditional experimental and statistical methods cannot give enough accuracy or solve the problem for a long time to detect something. This study used a unique hybrid model called MVMD-LWLR, which introduced an innovative method for forecasting BOD in the Klang River, Malaysia. The hybrid model combines a locally weighted linear regression (LWLR) model with a wavelet-based kernel function, along with multivariate variational mode decomposition (MVMD) for the decomposition of input variables. In addition, categorical boosting (Catboost) feature selection was used to discover and extract significant input variables. This combination of MVMD-LWLR and Catboost is the first use of such a complete model for predicting BOD levels in the given river environment. In addition, an optimization process was used to improve the performance of the model. This process utilized the gradient-based optimization (GBO) approach to fine-tune the parameters and better the overall accuracy of predicting BOD levels. To assess the robustness of the proposed method, we compared it to other popular models such as kernel ridge (KRidge) regression, LASSO, elastic net, and gaussian process regression (GPR). Several metrics, comprising root-mean-square error (RMSE), R (correlation coefficient), U95% (uncertainty coefficient at 95% level), and NSE (Nash-Sutcliffe efficiency), as well as visual interpretation, were used to evaluate the predictive efficacy of hybrid models. Extensive testing revealed that, in forecasting the BOD parameter, the MVMD-LWLR model outperformed its competitors. Consequently, for BOD forecasting, the suggested MVMD-LWLR optimized with the GBO algorithm yields encouraging and reliable results, with increased forecasting accuracy and minimal error.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links