Displaying all 16 publications

Abstract:
Sort:
  1. He Z, Tan JS, Lai OM, Ariff AB
    Food Chem, 2015 Aug 15;181:19-24.
    PMID: 25794715 DOI: 10.1016/j.foodchem.2014.11.166
    In this study, the methods for extraction and purification of miraculin from Synsepalum dulcificum were investigated. For extraction, the effect of different extraction buffers (phosphate buffer saline, Tris-HCl and NaCl) on the extraction efficiency of total protein was evaluated. Immobilized metal ion affinity chromatography (IMAC) with nickel-NTA was used for the purification of the extracted protein, where the influence of binding buffer pH, crude extract pH and imidazole concentration in elution buffer upon the purification performance was explored. The total amount of protein extracted from miracle fruit was found to be 4 times higher using 0.5M NaCl as compared to Tris-HCl and phosphate buffer saline. On the other hand, the use of Tris-HCl as binding buffer gave higher purification performance than sodium phosphate and citrate-phosphate buffers in IMAC system. The optimum purification condition of miraculin using IMAC was achieved with crude extract at pH 7, Tris-HCl binding buffer at pH 7 and the use of 300 mM imidazole as elution buffer, which gave the overall yield of 80.3% and purity of 97.5%. IMAC with nickel-NTA was successfully used as a single step process for the purification of miraculin from crude extract of S. dulcificum.
  2. Wang Y, Lim YY, He Z, Wong WT, Lai WF
    PMID: 33559482 DOI: 10.1080/10408398.2021.1882381
    The last decide has witnessed a growing research interest in the role of dietary phytochemicals in influencing the gut microbiota. On the other hand, recent evidence reveals that dietary phytochemicals exhibit properties of preventing and tackling symptoms of Alzheimer's disease, which is a neurodegenerative disease that has also been linked with the status of the gut microbiota over the last decade. Till now, little serious discussions, however, have been made to link recent understanding of Alzheimer's disease, dietary phytochemicals and the gut microbiota together and to review the roles played by phytochemicals in gut dysbiosis induced pathologies of Alzheimer's disease. Deciphering these connections can provide insights into the development and future use of dietary phytochemicals as anti-Alzheimer drug candidates. This review aims at presenting latest evidence in the modulating role of phytochemicals in the gut microbiota and its relevance to Alzheimer's disease and summarizing the mechanisms behind the modulative activities. Limitations of current research in this field and potential directions will also be discussed for future research on dietary phytochemicals as anti-Alzheimer agents.
  3. Wang X, Liu P, Yap B, Xia R, Wong WY, He Z
    Nanoscale, 2021 Oct 14;13(39):16589-16597.
    PMID: 34585178 DOI: 10.1039/d1nr03728e
    Liquid-exfoliated 2D transition metal disulfides (TMDs) are potential substitutes for poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as hole transport layers (HTLs) in Organic Solar Cells (OSCs). Herein, high-yield and high-quality WS2 flake layers are prepared by comprehensively controlling the initial concentration, sonication processing time and centrifugal speed. The WS2 layers deposited on in situ transparent indium tin oxide (ITO) without plasma treatment show higher uniformity and conductivity than that formed on ITO after plasma treatment. With a significant increase in the short-circuit current density (JSC), the power conversion efficiency (PCE) of PM6:Y6-based non-fullerene OSCs using optimized WS2 as the HTL is higher than that using PEDOT:PSS as the HTL(15.75% vs. 15.31%). Combining the morphology characteristics with carrier recombination characteristics, the higher quality of the ITO/WS2 composite substrate leads to better charge transport and a lower bimolecular recombination rate in OSCs, thereby improving the device performance.
  4. Gou Z, Zheng H, He Z, Su Y, Chen S, Chen H, et al.
    Environ Pollut, 2023 Jan 15;317:120790.
    PMID: 36460190 DOI: 10.1016/j.envpol.2022.120790
    This study aims to investigate the positive effects of the combined use of Enterobacter cloacae and biochar on improving nitrogen (N) utilization. The greenhouse pots experimental results showed the synergy of biochar and E. cloacae increased soil total N content and plant N uptake by 33.54% and 15.1%, respectively. Soil nitrogenase (NIT) activity increased by 253.02%. Ammonia monooxygenase (AMO) and nitrate reductase (NR) activity associated with nitrification and denitrification decreased by 10.94% and 29.09%, respectively. The relative abundance of N fixing microorganisms like Burkholderia and Bradyrhizobium significantly increased. Sphingomonas and Ottowia, two bacteria involved in the nitrification and denitrification processes, were found to be in lower numbers. The E. cloacae's ability to fix N2 and promote the growth of plants allow the retention of N in soil and make more N available for plant development. Biochar served as a reservoir of N for plants by adsorbing N from the soil and providing a shelter for E. cloacae. Thus, biochar and E. cloacae form a synergy for the management of agricultural N and the mitigation of negative impacts of pollution caused by excessive use of N fertilizer.
  5. Li T, Feng C, Yap BK, Zhu X, Xiong B, He Z, et al.
    Commun Chem, 2021 Oct 22;4(1):150.
    PMID: 36697810 DOI: 10.1038/s42004-021-00589-w
    One of the challenges for high-efficiency single-component-based photoredox catalysts is the low charge transfer and extraction due to the high recombination rate. Here, we demonstrate a strategy to precisely control the charge separation and transport efficiency of the catalytic host by introducing electron or hole extraction interlayers to improve the catalytic efficiency. We use simple and easily available non-conjugated polyelectrolytes (NCPs) (i.e., polyethyleneimine, PEI; poly(allylamine hydrochloride), PAH) to form interlayers, wherein such NCPs consist of the nonconjugated backbone with charge transporting functional groups. Taking CdS as examples, it is shown that although PEI and PAH are insulators and therefore do not have the ability to conduct electricity, they can form good electron or hole transport extraction layers due to the higher charge-transfer kinetics of pendant groups along the backbones, thereby greatly improving the charge transfer capability of CdS. Consequently, the resultant PEI-/PAH-functionalized nanocomposites exhibit significantly enhanced and versatile photoredox catalysis.
  6. He Z, Li X, Yang M, Wang X, Zhong C, Duke NC, et al.
    Natl Sci Rev, 2019 Mar;6(2):275-288.
    PMID: 31258952 DOI: 10.1093/nsr/nwy078
    Allopatric speciation requiring an unbroken period of geographical isolation has been the standard model of neo-Darwinism. While doubts have been repeatedly raised, strict allopatry without any gene flow remains a plausible mechanism in most cases. To rigorously reject strict allopatry, genomic sequences superimposed on the geological records of a well-delineated geographical barrier are necessary. The Strait of Malacca, narrowly connecting the Pacific and Indian Ocean coasts, serves at different times either as a geographical barrier or a conduit of gene flow for coastal/marine species. We surveyed 1700 plants from 29 populations of 5 common mangrove species by large-scale DNA sequencing and added several whole-genome assemblies. Speciation between the two oceans is driven by cycles of isolation and gene flow due to the fluctuations in sea level leading to the opening/closing of the Strait to ocean currents. Because the time required for speciation in mangroves is longer than the isolation phases, speciation in these mangroves has proceeded through many cycles of mixing-isolation-mixing, or MIM, cycles. the MIM mechanism, by relaxing the condition of no gene flow, can promote speciation in many more geographical features than strict allopatry can. Finally, the MIM mechanism of speciation is also efficient, potentially yielding m n (m > 1) species ather n cycles.

    SIGNIFICANCE STATEMENT: Mechanisms of species formation have always been a conundrum. Speciation between populations that are fully geographically isolated, or allopatric speciation, has been the standard solution in the last 50 years. Complete geographical isolation with no possibility of gene flow, however, is often untenable and is inefficient in generating the enormous biodiversity. By studying mangroves on the Indo-Malayan coasts, a global hotspot of coastal biodiversity, we were able to combine genomic data with geographical records on the Indo-Pacific Barrier that separates Pacific and Indian Ocean coasts. We discovered a novel mechanism of speciation that we call mixingisolation-mixing (MIM) cycles. By permitting intermittent gene flow during speciation,MIMcycles can potentially generate species at an exponential rate, thus combining speciation and biodiversity in a unified framework.

  7. Li B, He Z, Peters R, Allender S, Zou Y, Zhou W, et al.
    Int J Behav Nutr Phys Act, 2023 Sep 18;20(1):111.
    PMID: 37723534 DOI: 10.1186/s12966-023-01510-5
    BACKGROUND: Group Model Building (GMB) is a participatory system dynamics method increasingly used to address complex public health issues like obesity. GMB represents a set of well-defined steps to engage key stakeholders to identify shared drivers and solutions of a given problem. However, GMB has not yet been applied specifically to develop multi-duty interventions that address multiple inter-related issues such as malnutrition in all its forms (MIAIF). Moreover, a recent systematic review of empirical applications of a systems approach to developing obesity interventions found no published work from non-western, low- and middle-income countries (LMICs). In this paper we describe adaptations and innovations to a common GMB process to co-develop systemic MIAIF interventions with Chinese decision-makers.

    METHODS: We developed, piloted and implemented multiple cultural adaptations and two methodological innovations to the commonly used GMB process in Fang Cheng Gang city, China. We included formal, ceremonial and policy maker engagement events before and between GMB workshops, and incorporated culturally tailored arrangements during participant recruitment (officials of the same seniority level joined the same workshop) and workshop activities (e.g., use of individual scoring activities and hand boards). We made changes to the commonly used GMB activities which enabled mapping of shared drivers of multiple health issues (in our case MIAIF) in a single causal loop diagram. We developed and used a 'hybrid' GMB format combining online and in person facilitation to reduce travel and associated climate impact.

    RESULTS: Our innovative GMB process led to high engagement and support from decision-makers representing diverse governmental departments across the whole food systems. We co-identified and prioritised systemic drivers and intervention themes of MIAIF. The city government established an official Local Action Group for long-term, inter-departmental implementation, monitoring and evaluation of the co-developed interventions. The 'hybrid' GMB format enabled great interactions while reducing international travel and mitigating limitations of fully online GMB process.

    CONCLUSIONS: Cultural and methodological adaptations to the common GMB process for an Asian LMIC setting were successful. The 'hybrid' GMB format is feasible, cost-effective, and more environmentally friendly. These cultural adaptations could be considered for other Asian settings and beyond to address inter-related, complex issues such as MIAIF.

  8. Liang Z, Shi J, Wang C, Li J, Liang D, Yong EL, et al.
    Appl Environ Microbiol, 2020 11 10;86(23).
    PMID: 32948522 DOI: 10.1128/AEM.01920-20
    Pretreatment of waste-activated sludge (WAS) is an effective way to destabilize sludge floc structure and release organic matter for improving sludge digestion efficiency. Nonetheless, information on the impact of WAS pretreatment on digestion sludge microbiomes, as well as mechanistic insights into how sludge pretreatment improves digestion performance, remains elusive. In this study, a genome-centric metagenomic approach was employed to investigate the digestion sludge microbiome in four sludge digesters with different types of feeding sludge: WAS pretreated with 0.25 mol/liter alkaline/acid (APAD), WAS pretreated with 0.8 mol/liter alkaline/acid (HS-APAD), thermally pretreated WAS (thermal-AD), and fresh WAS (control-AD). We retrieved 254 metagenome-assembled genomes (MAGs) to identify the key functional populations involved in the methanogenic digestion process. These MAGs span 28 phyla, including 69 yet-to-be-cultivated lineages, and 30 novel lineages were characterized with metabolic potential associated with hydrolysis and fermentation. Interestingly, functional populations involving carbohydrate digestion were enriched in APAD and HS-APAD, while lineages related to protein and lipid fermentation were enriched in thermal-AD, corroborating the idea that different substrates are released from alkaline/acid and thermal pretreatments. Among the major functional populations (i.e., fermenters, syntrophic acetogens, and methanogens), significant correlations between genome sizes and abundance of the fermenters were observed, particularly in APAD and HS-APAD, which had improved digestion performance.IMPORTANCE Wastewater treatment generates large amounts of waste-activated sludge (WAS), which consists mainly of recalcitrant microbial cells and particulate organic matter. Though WAS pretreatment is an effective way to release sludge organic matter for subsequent digestion, detailed information on the impact of the sludge pretreatment on the digestion sludge microbiome remains scarce. Our study provides unprecedented genome-centric metagenomic insights into how WAS pretreatments change the digestion sludge microbiomes, as well as their metabolic networks. Moreover, digestion sludge microbiomes could be a unique source for exploring microbial dark matter. These results may inform future optimization of methanogenic sludge digestion and resource recovery.
  9. Wang H, Liu K, He Z, Chen Y, Hu Z, Chen W, et al.
    Mar Pollut Bull, 2024 Apr;201:116198.
    PMID: 38428045 DOI: 10.1016/j.marpolbul.2024.116198
    Metabarcoding analysis is an effective technique for monitoring the domoic acid-producing Pseudo-nitzschia species in marine environments, uncovering high-levels of molecular diversity. However, such efforts may result in the overinterpretation of Pseudo-nitzschia species diversity, as molecular diversity not only encompasses interspecies and intraspecies diversities but also exhibits extensive intragenomic variations (IGVs). In this study, we analyzed the V4 region of the 18S rDNA of 30 strains of Pseudo-nitzschia multistriata collected from the coasts of China. The results showed that each P. multistriata strain harbored about a hundred of unique 18S rDNA V4 sequence varieties, of which each represented by a unique amplicon sequence variant (ASV). This study demonstrated the extensive degree of IGVs in P. multistriata strains, suggesting that IGVs may also present in other Pseudo-nitzschia species and other phytoplankton species. Understanding the scope and levels of IGVs is crucial for accurately interpreting the results of metabarcoding analysis.
  10. Zheng J, Wai JL, Lake RJ, New SY, He Z, Lu Y
    Anal Chem, 2021 Aug 10;93(31):10834-10840.
    PMID: 34310132 DOI: 10.1021/acs.analchem.1c01077
    DNAzymes have emerged as an important class of sensors for a wide variety of metal ions, with florescence DNAzyme sensors as the most widely used in different sensing and imaging applications because of their fast response time, high signal intensity, and high sensitivity. However, the requirements of an external excitation light source and its associated power increase the cost and size of the fluorometer, making it difficult to be used for portable detections. To overcome these limitations, we report herein a DNAzyme sensor that relies on chemiluminescence resonance energy transfer (CRET) without the need for external light. The sensor is constructed by combining the functional motifs from both Pb2+-dependent 8-17 DNAzyme conjugated to fluorescein (FAM) and hemin/G-quadruplex that mimics horseradish peroxidase to catalyze the oxidation of luminol by H2O2 to yield chemiluminescence. In the absence of Pb2+, the hybridization between the enzyme and substrate strands bring the FAM and hemin/G-quadruplex in close proximity, resulting in CRET. The presence of Pb2+ ions can drive the cleavage on the substrate strand, resulting in a sharp decrease in the melting temperature of hybridization and thus separation of the FAM from hemin/G-quadruplex. The liberated CRET pair causes a ratiometric increase in the donor's fluorescent signal and a decrease in the acceptor signal. Using this method, Pb2+ ions have been measured rapidly (<15 min) with a low limit of detection at 5 nM. By removing the requirement of exogenous light excitation, we have demonstrated a simple and portable detection using a smartphone, making the DNAzyme-CRET system suitable for field tests of lake water. Since DNAzymes selective for other metal ions or targets, such as bacteria, can be obtained using in vitro selection, the method reported here opens a new avenue for rapid, portable, and ratiometric detection of many targets in environmental monitoring, food safety, and medical diagnostics.
  11. Guan J, He Z, Qin M, Deng X, Chen J, Duan S, et al.
    BMC Infect Dis, 2021 Feb 10;21(1):166.
    PMID: 33568111 DOI: 10.1186/s12879-021-05823-3
    BACKGROUND: An unexpected dengue outbreak occurred in Hunan Province in 2018. This was the first dengue outbreak in this area of inland China, and 172 cases were reported.

    METHODS: To verify the causative agent of this outbreak and characterise the viral genes, the genes encoding the structural proteins C/prM/E of viruses isolated from local residents were sequenced followed by mutation and phylogenetic analysis. Recombination, selection pressure, potential secondary structure and three-dimensional structure analyses were also performed.

    RESULTS: Phylogenetic analysis revealed that all epidemic strains were of the cosmopolitan DENV-2 genotype and were most closely related to the Zhejiang strain (MH010629, 2017) and then the Malaysia strain (KJ806803, 2013). Compared with the sequence of DENV-2SS, 151 base substitutions were found in the sequences of 89 isolates; these substitutions resulted in 20 non-synonymous mutations, of which 17 mutations existed in all samples (two in the capsid protein, six in the prM/M proteins, and nine in the envelope proteins). Moreover, amino acid substitutions at the 602nd (E322:Q → H) and 670th (E390: N → S) amino acids may have enhanced the virulence of the epidemic strains. One new DNA binding site and five new protein binding sites were observed. Two polynucleotide binding sites and seven protein binding sites were lost in the epidemic strains compared with DENV-2SS. Meanwhile, five changes were found in helical regions. Minor changes were observed in helical transmembrane and disordered regions. The 429th amino acid of the E protein switched from a histamine (positively charged) to an asparagine (neutral) in all 89 isolated strains. No recombination events or positive selection pressure sites were observed. To our knowledge, this study is the first to analyse the genetic characteristics of epidemic strains in the first dengue outbreak in Hunan Province in inland China.

    CONCLUSIONS: The causative agent is likely to come from Zhejiang Province, a neighbouring province where dengue fever broke out in 2017. This study may help clarify the intrinsic geographical relatedness of DENV-2 and contribute to further research on pathogenicity and vaccine development.

  12. He Z, Yang H, Wong NH, Ernawati L, Sunarso J, Huang Z, et al.
    Small, 2023 Feb 10.
    PMID: 36765447 DOI: 10.1002/smll.202207370
    Water pollution caused by the massive use of medicines has caused significant environmental problems. This work first reports the synthesis and characterization of the Cu7 S4 /CuCo2 O4 (CS/CCO) yolk-shell microspheres via hydrothermal and annealing methods, and then investigates their photocatalytic performance in removing organic water pollutants. The 10-CS/CCO composite with yolk-shell microspheres exhibits the highest photodegradation rate of carbamazepine (CBZ), reaching 96.3% within 2 h. The 10-CS/CCO also demonstrates more than two times higher photodegradation rates than the pure (Cu7 S4 ) CS and (CuCo2 O4 ) CCO. This outstanding photocatalytic performance can be attributed to the unique yolk-shell structure and the Z-scheme charge transfer pathway, reducing multiple reflections of the acting light. These factors enhance the light absorption efficiency and efficiently transfer photoexcited charge carriers. In-depth, photocatalytic degradation pathways of CBZ are systematically evaluated via the identification of degradation intermediates with Fukui index calculation. The insights gained from this work can serve as a guideline for developing low-cost and efficient Z-scheme photocatalyst composites with the yolk-shell structure.
  13. Thien GSH, Ab Rahman M, Yap BK, Tan NML, He Z, Low PL, et al.
    ACS Omega, 2022 Nov 08;7(44):39472-39481.
    PMID: 36385870 DOI: 10.1021/acsomega.2c03206
    Due to their remarkable electrical and light absorption characteristics, hybrid organic-inorganic perovskites have recently gained popularity in several applications such as optoelectronics, lasers, and light-emitting diodes. Through this, there has recently been an increase in the use of halide perovskites (HPs) in resistive switching (RS) devices. However, lead-based (Pb-based) perovskites are notorious for being unstable and harmful to the environment. As a result, lead-free (Pb-free) perovskite alternatives are being investigated in achieving the long-term and sustainable use of RS devices. This work describes the characteristics of Pb-based and Pb-free perovskite RS devices. It also presents the recent advancements of HP RS devices, including the selection strategies of perovskite structures. In terms of resistive qualities, the directions of both HPs appear to be identical. Following that, the possible impact of switching from Pb-based to Pb-free HPs is examined to determine the requirement in RS devices. Finally, this work discusses the opportunities and challenges of HP RS devices in creating a stable, efficient, and sustainable memory storage technology.
  14. He Z, Chin Y, Yu S, Huang J, Zhang CJP, Zhu K, et al.
    JMIR Public Health Surveill, 2021 Jan 25;7(1):e20495.
    PMID: 33232262 DOI: 10.2196/20495
    BACKGROUND: The influence of meteorological factors on the transmission and spread of COVID-19 is of interest and has not been investigated.

    OBJECTIVE: This study aimed to investigate the associations between meteorological factors and the daily number of new cases of COVID-19 in 9 Asian cities.

    METHODS: Pearson correlation and generalized additive modeling (GAM) were performed to assess the relationships between daily new COVID-19 cases and meteorological factors (daily average temperature and relative humidity) with the most updated data currently available.

    RESULTS: The Pearson correlation showed that daily new confirmed cases of COVID-19 were more correlated with the average temperature than with relative humidity. Daily new confirmed cases were negatively correlated with the average temperature in Beijing (r=-0.565, PZ=11.594, P

  15. Peters R, Li B, Swinburn B, Allender S, He Z, Lim SY, et al.
    Bull World Health Organ, 2023 Nov 01;101(11):690-706F.
    PMID: 37961057 DOI: 10.2471/BLT.23.289973
    OBJECTIVE: To identify and analyse ongoing nutrition-related surveillance programmes led and/or funded by national authorities in countries in South-East Asian and Western Pacific Regions.

    METHODS: We systematically searched for publications in PubMed® and Scopus, manually searched the grey literature and consulted with national health and nutrition officials, with no restrictions on publication type or language. We included low- and middle-income countries in the World Health Organization South-East Asia Region, and the Association of Southeast Asian Nations and China. We analysed the included programmes by adapting the United States Centers for Disease Control and Prevention's public health surveillance evaluation framework.

    FINDINGS: We identified 82 surveillance programmes in 18 countries that repeatedly collect, analyse and disseminate data on nutrition and/or related indicators. Seventeen countries implemented a national periodic survey that exclusively collects nutrition-outcome indicators, often alongside internationally linked survey programmes. Coverage of different subpopulations and monitoring frequency vary substantially across countries. We found limited integration of food environment and wider food system indicators in these programmes, and no programmes specifically monitor nutrition-sensitive data across the food system. There is also limited nutrition-related surveillance of people living in urban deprived areas. Most surveillance programmes are digitized, use measures to ensure high data quality and report evidence of flexibility; however, many are inconsistently implemented and rely on external agencies' financial support.

    CONCLUSION: Efforts to improve the time efficiency, scope and stability of national nutrition surveillance, and integration with other sectoral data, should be encouraged and supported to allow systemic monitoring and evaluation of malnutrition interventions in these countries.

  16. Tang C, Yang M, Fang Y, Luo Y, Gao S, Xiao X, et al.
    Nat Plants, 2016 05 23;2(6):16073.
    PMID: 27255837 DOI: 10.1038/nplants.2016.73
    The Para rubber tree (Hevea brasiliensis) is an economically important tropical tree species that produces natural rubber, an essential industrial raw material. Here we present a high-quality genome assembly of this species (1.37 Gb, scaffold N50 = 1.28 Mb) that covers 93.8% of the genome (1.47 Gb) and harbours 43,792 predicted protein-coding genes. A striking expansion of the REF/SRPP (rubber elongation factor/small rubber particle protein) gene family and its divergence into several laticifer-specific isoforms seem crucial for rubber biosynthesis. The REF/SRPP family has isoforms with sizes similar to or larger than SRPP1 (204 amino acids) in 17 other plants examined, but no isoforms with similar sizes to REF1 (138 amino acids), the predominant molecular variant. A pivotal point in Hevea evolution was the emergence of REF1, which is located on the surface of large rubber particles that account for 93% of rubber in the latex (despite constituting only 6% of total rubber particles, large and small). The stringent control of ethylene synthesis under active ethylene signalling and response in laticifers resolves a longstanding mystery of ethylene stimulation in rubber production. Our study, which includes the re-sequencing of five other Hevea cultivars and extensive RNA-seq data, provides a valuable resource for functional genomics and tools for breeding elite Hevea cultivars.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links