Molecular pathogenesis of chronic myeloid leukemia (CML) is well established and molecular monitoring for patients with CML has become an important practice in the management of patients on imatinib therapy. In the present study, we report the use of RQ-PCR method for detection of BCR-ABL fusion gene for our CML cases. We performed a two-step RQ-PCR on bone marrow aspirates or peripheral blood of 37 CML patients. Quantitative expression of BCR-ABL fusion gene was carried out relative to the expression of a housekeeping gene as endogenous control to compensate for uneven cell numbers, RNA quality, or variations in reverse transcription efficiencies. Twenty-four of these patients were pre-treated with hydroxyurea or alpha interferon prior to the imatinib therapy. Their BCR-ABL fusion gene levels were monitored for 18 months. All samples processed were evaluable. The PCR amplification efficiency of the ABL gene is 90.5% (0.2158) and the BCR-ABL gene, 93.4% (0.1573).
G6PD deficiency is the commonest enzyme deficiency found in humans. Current diagnostic methods lack sensitivity to detect all cases of G6PD deficiency. We evaluated the reverse dot blot flow-through hybridisation assay designed to detect simultaneously multiple known G6PD mutations in a group of Malaysian neonates. Archival DNA samples from 141 G6PD-deficient neonates were subjected to reverse dot blot flow-through hybridisation assay using the GenoArray Diagnostic Kit (Hybribio Limited, Hong Kong) and DNA sequencing. The method involved PCR amplification of 5 G6PD exons using biotinylated primers, hybridisation of amplicons to a membrane containing oligoprobes designed for G6PD mutations known to occur in the Malaysian population and colour detection by enzyme immunoassay. The assay detected 13 of the 14 G6PD mutations and genotyped 133 (94.3%) out of 141 (102 males, 39 females) cases. Among the 39 female G6PD-deficient neonates, there were 7 homozygous and 6 compound heterozygous cases. The commonest alleles were G6PD Viangchan 871G > A (21%) and G6PD Mahidol 487G > A(20%) followed by G6PD Mediterranean 563C > T, (14%), G6PD Vanua Lava 383T > C (12%), G6PD Canton 1376G > T (10%), G6PD Orissa 131C > G (6.3%) G6PD Coimbra 592C > T (5.6%) plus 6 other mutations. DNA sequencing of remaining cases revealed 6 cases of intron 11 nt 93C > T not previously reported in Malaysia and two novel mutations, one case each of nt 1361G > T and nt 1030G > A. We found the reverse dot blot assay easy to perform, rapid, accurate and reproducible, potentially becoming an improved diagnostic test for G6PD deficiency.