DESIGN: Cross-sectional observational study.
SETTING: Twenty-three Asian countries and regions, covering 92.1% of the continent's population.
PARTICIPANTS: Ten low-income and lower-middle-income economies, five upper-middle-income economies, and eight high-income economies according to the World Bank classification.
INTERVENTIONS: Data closest to 2017 on critical care beds, including ICU and intermediate care unit beds, were obtained through multiple means, including government sources, national critical care societies, colleges, or registries, personal contacts, and extrapolation of data.
MEASUREMENTS AND MAIN RESULTS: Cumulatively, there were 3.6 critical care beds per 100,000 population. The median number of critical care beds per 100,000 population per country and region was significantly lower in low- and lower-middle-income economies (2.3; interquartile range, 1.4-2.7) than in upper-middle-income economies (4.6; interquartile range, 3.5-15.9) and high-income economies (12.3; interquartile range, 8.1-20.8) (p = 0.001), with a large variation even across countries and regions of the same World Bank income classification. This number was independently predicted by the World Bank income classification on multivariable analysis, and significantly correlated with the number of acute hospital beds per 100,000 population (r = 0.19; p = 0.047), the universal health coverage service coverage index (r = 0.35; p = 0.003), and the Human Development Index (r = 0.40; p = 0.001) on univariable analysis.
CONCLUSIONS: Critical care bed capacity varies widely across Asia and is significantly lower in low- and lower-middle-income than in upper-middle-income and high-income countries and regions.
METHODS AND ANALYSIS: PRoVENT-iMIC (study of PRactice of VENTilation in Middle-Income Countries) is an international multicentre observational study to be undertaken in approximately 60 ICUs in 11 Asian countries. Consecutive patients aged 18 years or older who are receiving invasive ventilation in participating ICUs during a predefined 28-day period are to be enrolled, with a daily follow-up of 7 days. The primary outcome is ventilatory management (including tidal volume expressed as mL/kg predicted body weight and positive end-expiratory pressure expressed as cm H2O) during the first 3 days of mechanical ventilation-compared between patients at no risk for acute respiratory distress syndrome (ARDS), patients at risk for ARDS and in patients with ARDS (in case the diagnosis of ARDS can be made on admission). Secondary outcomes include occurrence of pulmonary complications and all-cause ICU mortality.
ETHICS AND DISSEMINATION: PRoVENT-iMIC will be the first international study that prospectively assesses ventilation practices, outcomes and epidemiology of invasively ventilated patients in ICUs in Asia. The results of this large study, to be disseminated through conference presentations and publications in international peer-reviewed journals, are of ultimate importance when designing trials of invasive ventilation in resource-limited ICUs. Access to source data will be made available through national or international anonymised datasets on request and after agreement of the PRoVENT-iMIC steering committee.
TRIAL REGISTRATION NUMBER: NCT03188770; Pre-results.
MAIN BODY: Although the first Asian intensive care units (ICUs) surfaced in the 1960s and the 1970s and specialisation started in the 1990s, multiple challenges still exist, including the lack of intensivists, critical care nurses, and respiratory therapists in many countries. This is aggravated by the brain drain of skilled ICU staff to high-income countries. Critical care societies have been integral to the development of the discipline and have increasingly contributed to critical care education, although critical care research is only just starting to take off through collaboration across groups. Sepsis, increasingly aggravated by multidrug resistance, contributes to a significant burden of critical illness, while epidemics and pandemics continue to haunt the continent intermittently. In particular, the coronavirus disease 2019 (COVID-19) has highlighted the central role of critical care in pandemic response. Accessibility to critical care is affected by lack of ICU beds and high costs, and quality of critical care is affected by limited capability for investigations and treatment in low- and middle-income countries. Meanwhile, there are clear cultural differences across countries, with considerable variations in end-of-life care. Demand for critical care will rise across the continent due to ageing populations and rising comorbidity burdens. Even as countries respond by increasing critical care capacity, the critical care community must continue to focus on training for ICU healthcare workers, processes anchored on evidence-based medicine, technology guided by feasibility and impact, research applicable to Asian and local settings, and rallying of governments for support for the specialty.
CONCLUSIONS: Critical care in Asia has progressed through the years, but multiple challenges remain. These challenges should be addressed through a collaborative approach across disciplines, ICUs, hospitals, societies, governments, and countries.
METHODS: This observational study collected data closest to 2022 on critical care beds (intensive care units and intermediate care units) in 12 middle-income and 7 high-income economies (using the 2022-2023 World Bank classification), through a mix of methods including government sources, national critical care societies, personal contacts, and data extrapolation. Data were compared with a prior study from 2017 of the same countries and regions.
FINDINGS: The cumulative number of critical care beds per 100,000 population increased from 3.0 in 2017 to 9.4 in 2022 (p = 0.003). The median figure for middle-income economies increased from 2.6 (interquartile range [IQR] 1.7-7.8) to 6.6 (IQR 2.2-13.3), and that for high-income economies increased from 11.4 (IQR 7.3-22.8) to 13.9 (IQR 10.7-21.7). Only 3 countries did not see a rise in bed capacity. Where data were available in 2022, 10.9% of critical care beds were in single rooms (median 5.0% in middle-income and 20.3% in high-income economies), and 5.3% had negative pressure (median 0.7% in middle-income and 18.5% in high-income economies).
INTERPRETATION: Critical care bed capacity in the studied Asian countries and regions increased close to three-fold from 2017 to 2022. Much of this increase was attributed to middle-income economies, but substantial heterogeneity exists.
FUNDING: None.
METHODS: We conducted an international, retrospective cohort study using 2019 and 2020 data from 11 national clinical quality registries covering 15 countries. Non-COVID-19 admissions in 2020 were compared with all admissions in 2019, prepandemic. The primary outcome was intensive care unit (ICU) mortality. Secondary outcomes included in-hospital mortality and standardised mortality ratio (SMR). Analyses were stratified by the country income level(s) of each registry.
FINDINGS: Among 1 642 632 non-COVID-19 admissions, there was an increase in ICU mortality between 2019 (9.3%) and 2020 (10.4%), OR=1.15 (95% CI 1.14 to 1.17, p<0.001). Increased mortality was observed in middle-income countries (OR 1.25 95% CI 1.23 to 1.26), while mortality decreased in high-income countries (OR=0.96 95% CI 0.94 to 0.98). Hospital mortality and SMR trends for each registry were consistent with the observed ICU mortality findings. The burden of COVID-19 was highly variable, with COVID-19 ICU patient-days per bed ranging from 0.4 to 81.6 between registries. This alone did not explain the observed non-COVID-19 mortality changes.
INTERPRETATION: Increased ICU mortality occurred among non-COVID-19 patients during the pandemic, driven by increased mortality in middle-income countries, while mortality decreased in high-income countries. The causes for this inequity are likely multi-factorial, but healthcare spending, policy pandemic responses, and ICU strain may play significant roles.
METHODS: This was a secondary analysis of the MOSAICS II study, an international prospective observational study on sepsis epidemiology in Asian ICUs. Associations between qSOFA at ICU admission and mortality were separately assessed in LLMIC, UMIC and HIC countries/regions. Modified Poisson regression was used to determine the adjusted relative risk (RR) of qSOFA score on mortality at 28 days with adjustments for confounders identified in the MOSAICS II study.
RESULTS: Among the MOSAICS II study cohort of 4980 patients, 4826 patients from 343 ICUs and 22 countries were included in this secondary analysis. Higher qSOFA was associated with increasing 28-day mortality, but this was only observed in LLMIC (p
METHODS: Here, we propose an innovative approach to study changes in COVID-19 hospital presentation and outcomes after the Omicron variant emergence using publicly available population-level data on variant relative frequency to infer SARS-CoV-2 variants likely responsible for clinical cases. We apply this method to data collected by a large international clinical consortium before and after the emergence of the Omicron variant in different countries.
RESULTS: Our analysis, that includes more than 100,000 patients from 28 countries, suggests that in many settings patients hospitalised with Omicron variant infection less often presented with commonly reported symptoms compared to patients infected with pre-Omicron variants. Patients with COVID-19 admitted to hospital after Omicron variant emergence had lower mortality compared to patients admitted during the period when Omicron variant was responsible for only a minority of infections (odds ratio in a mixed-effects logistic regression adjusted for likely confounders, 0.67 [95% confidence interval 0.61-0.75]). Qualitatively similar findings were observed in sensitivity analyses with different assumptions on population-level Omicron variant relative frequencies, and in analyses using available individual-level data on infecting variant for a subset of the study population.
CONCLUSIONS: Although clinical studies with matching viral genomic information should remain a priority, our approach combining publicly available data on variant frequency and a multi-country clinical characterisation dataset with more than 100,000 records allowed analysis of data from a wide range of settings and novel insights on real-world heterogeneity of COVID-19 presentation and clinical outcome.
FUNDING: Bronner P. Gonçalves, Peter Horby, Gail Carson, Piero L. Olliaro, Valeria Balan, Barbara Wanjiru Citarella, and research costs were supported by the UK Foreign, Commonwealth and Development Office (FCDO) and Wellcome [215091/Z/18/Z, 222410/Z/21/Z, 225288/Z/22/Z]; and Janice Caoili and Madiha Hashmi were supported by the UK FCDO and Wellcome [222048/Z/20/Z]. Peter Horby, Gail Carson, Piero L. Olliaro, Kalynn Kennon and Joaquin Baruch were supported by the Bill & Melinda Gates Foundation [OPP1209135]; Laura Merson was supported by University of Oxford's COVID-19 Research Response Fund - with thanks to its donors for their philanthropic support. Matthew Hall was supported by a Li Ka Shing Foundation award to Christophe Fraser. Moritz U.G. Kraemer was supported by the Branco Weiss Fellowship, Google.org, the Oxford Martin School, the Rockefeller Foundation, and the European Union Horizon 2020 project MOOD (#874850). The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission. Contributions from Srinivas Murthy, Asgar Rishu, Rob Fowler, James Joshua Douglas, François Martin Carrier were supported by CIHR Coronavirus Rapid Research Funding Opportunity OV2170359 and coordinated out of Sunnybrook Research Institute. Contributions from Evert-Jan Wils and David S.Y. Ong were supported by a grant from foundation Bevordering Onderzoek Franciscus; and Andrea Angheben by the Italian Ministry of Health "Fondi Ricerca corrente-L1P6" to IRCCS Ospedale Sacro Cuore-Don Calabria. The data contributions of J.Kenneth Baillie, Malcolm G. Semple, and Ewen M. Harrison were supported by grants from the National Institute for Health Research (NIHR; award CO-CIN-01), the Medical Research Council (MRC; grant MC_PC_19059), and by the NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE) (award 200907), NIHR HPRU in Respiratory Infections at Imperial College London with PHE (award 200927), Liverpool Experimental Cancer Medicine Centre (grant C18616/A25153), NIHR Biomedical Research Centre at Imperial College London (award IS-BRC-1215-20013), and NIHR Clinical Research Network providing infrastructure support. All funders of the ISARIC Clinical Characterisation Group are listed in the appendix.
METHODS: Using rapid evaluation methods, we will use four data collection methods: 1) registry embedded indicators to assess quality of care processes and their associated outcomes; 2) process mapping to provide a preliminary framework to understand gaps between current and desired care practices; 3) structured observations of processes of interest identified from the process mapping and; 4) focus group discussions with stakeholders to identify barriers and enablers influencing the gap between current and desired care practices. We will also collect self-assessments of readiness for quality improvement. Data collection and analysis will be led by local stakeholders, performed in parallel and through an iterative process across eight countries: Kenya, India, Malaysia, Nepal, Pakistan, South Africa, Uganda and Vietnam.
CONCLUSIONS: The results of our study will provide essential information on where and how care processes can be improved to facilitate better quality of care to critically ill patients in LMICs; thus, reduce preventable mortality and morbidity in ICUs. Furthermore, understanding the rapid evaluation methods that will be used for this study will allow other researchers and healthcare professionals to carry out similar research in ICUs and other health services.
METHODS: The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV).
RESULTS: Data were available for 689 572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%.
CONCLUSIONS: Age was the strongest determinant of risk of death, with a ∼30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death.
MATERIALS AND METHODS: An online global survey on clinical practices related to SDF was disseminated to reproductive clinicians, according to the CHERRIES checklist criteria. Management protocols for various conditions associated with SDF were captured and compared to the relevant recommendations in professional society guidelines and the appropriate available evidence. Expert recommendations and consensus on the management of infertile men with elevated SDF were then formulated and adapted using the Delphi method.
RESULTS: A total of 436 experts from 55 different countries submitted responses. As an initial approach, 79.1% of reproductive experts recommend lifestyle modifications for infertile men with elevated SDF, and 76.9% prescribe empiric antioxidants. Regarding antioxidant duration, 39.3% recommend 4-6 months and 38.1% recommend 3 months. For men with unexplained or idiopathic infertility, and couples experiencing recurrent miscarriages associated with elevated SDF, most respondents refer to ART 6 months after failure of conservative and empiric medical management. Infertile men with clinical varicocele, normal conventional semen parameters, and elevated SDF are offered varicocele repair immediately after diagnosis by 31.4%, and after failure of antioxidants and conservative measures by 40.9%. Sperm selection techniques and testicular sperm extraction are also management options for couples undergoing ART. For most questions, heterogenous practices were demonstrated.
CONCLUSIONS: This paper presents the results of a large global survey on the management of infertile men with elevated SDF and reveals a lack of consensus among clinicians. Furthermore, it demonstrates the scarcity of professional society guidelines in this regard and attempts to highlight the relevant evidence. Expert recommendations are proposed to help guide clinicians.