The effects of pump speed, cumulative permeate volume and concentration of feed (yeast cells) on the permeate flux have been studied on a batch cross-flow microfiltration process. The experiments were conducted for two different cellulose acetate membrane modules of 0.2 micron and 0.45 micron pore size. A three factor experiment was designed for this purpose and the effect of the operating parameters on the filtration rate was studied by the analysis of variance (ANOVA). It is concluded from the analysis of the experimental data that pump speed has the maximum bearing upon the permeate rate within the operating range of parameters. Fouling conditions were examined in the light of colloids deposition on membranes due to surface interactions. However this paper looks into the relationship and sensitivity of the operating parameters in a cross-flow microfiltration unit rather than exploring the theoretical principles behind the observed phenomena.
The objective is to assess the efficacy of a modified Assertive Community treatment (ACT). This is a retrospective cross-sectional study with a comparative group. The study group was patients with schizophrenia who had completed modified ACT, while the control group was those who did not receive modified ACT. The final sample comprises 44 patients in each group. There was no significant difference between both groups in number of admissions and average length of stay. However, in the modified ACT group there was a significant reduction in the number of admissions after the intervention. In conclusion readmission rate was significantly reduced following modified ACT intervention.
The Yoon-Nelson model serves as a widely used tool for describing the breakthrough behavior of organic micropollutants within fixed bed adsorbers. This study aims to augment its modeling efficacy through two proposed refinements found in the literature: a logarithmic transformation and the incorporation of steric hindrance effects. We systematically evaluated the original Yoon-Nelson model alongside the modified versions, using breakthrough data associated with micropollutant adsorption on solid materials. Three distinct cases were scrutinized: (1) caffeine adsorption on activated carbon; (2) tetracycline adsorption on hierarchical porous carbon; and (3) diclofenac adsorption on organoclay. While all three models demonstrated comparable performance with highly symmetric breakthrough data in case 1, their efficacy diverged significantly when confronted with strongly asymmetric breakthrough data in cases 2 and 3. The original Yoon-Nelson model and the logarithmically modified version fell short in accurately representing these intricate breakthrough curves. In contrast, the version incorporating steric hindrance effects showcased substantial accuracy, outperforming other models in capturing the complexities of asymmetric breakthrough data. This advancement markedly enhances the modeling accuracy and versatility of the Yoon-Nelson model, particularly in assessing the dynamic behavior of organic micropollutants within fixed bed adsorbers.
A comparative study on the optimization of process parameters of an emulsion ionic liquid membrane (EILM) by experimental work and response surface methodology (RSM) has been carried out. EILM was prepared by using kerosene as solvent, Span 80 as surfactant, NaOH as internal reagent, a hydrophobic ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM](+)[NTf(2)](-)) as a stabilizer and a second ionic liquid tri-n-octylmethylammonium chloride (TOMAC) as a carrier. The prepared EILM was used to separate and concentrate Cr from wastewaters. The comparison between the experimentally optimized and the RSM optimized values was accomplished by optimizing the following parameters: homogenization speed, carrier concentration, internal phase concentration, agitation speed, treat ratio, internal to membrane phase ratio, surfactant concentration and pH of the feed phase. The comparison showed that all the values were in good agreement except for the internal phase concentration and the treat ratio. It was observed that the stability provided by [BMIM](+)[NTf(2)](-) decreased as the extraction progressed due to its high density. Nevertheless, a good stability could be obtained by the combination of [BMIM](+)[NTf(2)](-) and Span 80 during extraction process.
This work evaluates the performance of ionic liquid in supported liquid membrane (SLM) for the removal of phenol from wastewater. Ionic liquids are organic salts entirely composed of organic cations and either organic or inorganic anions. Due to the fact that the vapor pressure of ionic liquid is not detectable and they are sparingly soluble in most conventional solvents, they can be applied in SLM as the organic phase. In this work, 1-n-alkyl-3-methylimidazolium salts, [C(n)MIM](+)[X](-) have been investigated so as to determine an optimal supported ionic liquid membrane. The effect of operational parameters such as pH, stirring speed and the concentration of stripping agent has been studied, and an evaluation of different membrane supports were also carried out. With a minimal amount of the ionic liquid 1-Butyl-3-methylimidazolium hydrogensulfate, 85% phenol removal could be achieved by using polytetrafluoroethylene hydrophobic membrane filter in the SLM.
This study focuses on the role of a hydrophobic ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMIM](+)[NTf(2)](-) in the preparation of emulsion liquid membrane (ELM) phase containing kerosene as solvent, Span 80 as surfactant, NaOH as internal phase and TOMAC (tri-n-octylmethylammonium chloride) a second ionic liquid as carrier. The first time used [BMIM](+)[NTf(2)](-) in ELM was found to play the role of a stabilizer. The emulsion prepared using [BMIM](+) [NTf(2)](-) has a long period of stability of about 7h (at 3% (w/w) of [BMIM](+)[NTf(2)](-)) which otherwise has a brief stability up to only 7 min. The stability of the emulsion increases with the increase in concentration of [BMIM](+)[NTf(2)](-) up to 3% (w/w). Nevertheless, with further increase in concentration of [BMIM](+)[NTf(2)](-), a reduction in the stability occurs. The extraction experiments were carried out after holding the ELM for 2h after the preparation and a removal efficiency of approximately 80% was obtained for Cr. The destabilization of the emulsion was studied by observing the change in the interface height. An empirical correlation for the stability of the emulsion has been proposed.
The percentage removal of phenol from aqueous solution by emulsion liquid membrane and emulsion leakage was investigated experimentally for various parameters such as membrane:internal phase ratio, membrane:external phase ratio, emulsification speed, emulsification time, carrier concentration, surfactant concentration and internal agent concentration. These parameters strongly influence the percentage removal of phenol and emulsion leakage. Under optimum membrane properties, the percentage removal of phenol was as high as 98.33%, with emulsion leakage of 1.25%. It was also found that the necessity of carrier for enhancing phenol removal was strongly dependent on the internal agent concentration.
Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%.
Addressing inaccuracies in review articles is essential to prevent the proliferation of misinformation. This communication is dedicated to rectifying factual errors identified in a recent review article featured in this journal, with a specific emphasis on addressing errors related to the Temkin, Flory-Huggins, Sips, and Baudu isotherm models. By elucidating and clarifying these inaccuracies, we aim to uphold the integrity of scientific discourse and ensure the accurate dissemination of information within the scholarly community.
Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5-6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.
The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility.
Deep eutectic solvents (DESs) are novel solvent media that are currently under investigation as an alternative to ionic liquids and conventional solvents. The physical properties of DESs as well as their mild environmental footprint and potentially critical industrial application necessitate understanding the interaction of functional groups on both the salt and hydrogen bond donor (HBD). In this study, four DESs were prepared by mixing triethylenglycol, diethylenglycol, ethylenglycol, and glycerol as HBDs with methyltriphenylphosphonium bromide as a salt at a molar ratio of 1:4. Fourier transform infrared spectroscopy was conducted to highlight the chemical structure and mechanism of the combination of the four DESs. New spectra illustrating the combination of the functional groups of the HBDs and salt were observed and interpreted. This study is the first to investigate the properties of neoteric phosphonium-based DESs.
The equitable access to quality healthcare by Malaysians has consistently been the primary objective of the Ministry of Health (MOH). The epidemiological transition to chronic illnesses, advances in medical technology, escalating healthcare costs and rising patient expectations has necessitated the strategic use of information systems in healthcare delivery. Malaysia has broken new ground by implementing a nationwide network to address inadequate access to healthcare, as well as to lower costs and achieve better health outcomes. Teleconsultation refers to the electronic transmission of medical information and services from one site to another using telecommunication technologies. This technology transforms the healthcare system by rapidly matching patient needs with the appropriate level of care however geographically remote they may be. Our findings suggest that even in these early stages of implementation, teleconsultation has led to cost savings, a more efficient allocation of resources, enhanced diagnostic options and better health outcomes.
Phosphate and colloidal gas aphrons (CGAs) generated from saponin extracted from Sapindus mukorossi fruit, were evaluated for washing low levels of arsenic from an iron rich soil. Phosphate is one of the most commonly dispersed chemicals that increases arsenic mobility in soil due to their structural similarities, making it an important factor in arsenic removal process. Column washing experiments were performed with CGAs in down flow and up flow modes on soil of pH 5 and 6. Soapnut CGAs, when paired with phosphate removed up to 95 % arsenic while soapnut CGAs alone could only remove up to 70 % arsenic. The presence of phosphate improved efficiency of soapnut solution by up to 35 %. SEM image of washed soil revealed minor corrosion of soil surface while using phosphate with soapnut. Therefore, the addition of phosphates would have positive impact on soil washing using soapnut saponin.
This work demonstrated the synthesis of carbon nanotubes (CNTs) on powder activated carbon (PAC) impregnated with Ni-catalyst through chemical vapour deposition. The optimized effects of reaction temperature, time and feedstock flow rates on CNT growth were examined. Potassium permanganate (KMnO4) and potassium permanganate in acidic solution (KMnO4/H2SO4) were used to functionalize CNTs samples. A primary screening of methylene blue (MB) adsorption was conducted. The chemical, physical and morphological properties of the adsorbent with the highest removal efficiency were investigated using FESEM, EDX, TEM, BET surface area, RAMAN, TGA, FTIR, and zeta potential. The resulting carbon nanotube-loaded activated carbons possessed abundant pore structure and large surface area. The MB removal by the as-synthesized CNTs was more remarkable than that by the modified samples. Adsorption studies were carried out to evaluate the optimum conditions, kinetics and isotherms for MB adsorption process. The response surface methodology-central composite design (RSM-CCD) was used to optimize the adsorption process parameters, including pH, adsorbent dosage and contact time. The investigation of the adsorption behaviour demonstrated that the adsorption was well fitted with the pseudo-second-order model and Langmuir isotherm with the maximum monolayer adsorption capacity of 174.5 mg/g. Meanwhile, the adsorption of MB onto adsorbent was driven by the electrostatic attraction and π-π interaction. Moreover, the as-obtained CNT-PAC exhibited good reusability after four repeated operations. In view of these empirical findings, the low-cost CNT-PAC has potential for removal of MB from aqueous solution.
This correspondence critically examines and rectifies modeling deficiencies identified in a recent article published in this journal. Our analysis covers a range of models and issues, including the Temkin isotherm, the Flory-Huggins isotherm, the pseudo-first-order kinetic model, the pseudo-second-order kinetic model, the intraparticle diffusion model, the Elovich kinetic model, and the computation of thermodynamic parameters. The elucidation and correction of these modeling issues contribute to a more accurate and reliable understanding of the studied phenomena, thereby enhancing the scientific rigor of the subject paper.
Deep eutectic solvents (DESs) have received attention in various applications because of their distinctive properties. In this work, DESs were used as functionalizing agents for graphene due to their potential to introduce new functional groups and cause other surface modifications. Eighteen different types of ammonium- and phosphonium-salt-based DESs were prepared and characterized by FTIR. The graphene was characterized by FTIR, STA, Raman spectroscopy, XRD, SEM, and TEM. Additional experiments were performed to study the dispersion behavior of the functionalized graphene in different solvents. The DESs exhibited both reduction and functionalization effects on DES-treated graphene. Dispersion stability was investigated and then characterized by UV-vis spectroscopy and zeta potential. DES-modified graphene can be used in many applications, such as drug delivery, wastewater treatment, catalysts, composite materials, nanofluids, and biosensors. To the best of our knowledge, this is the first investigation on the use of DESs for graphene functionalization.
The cytotoxic potential of ammonium-based deep eutectic solvents (DESs) with four hydrogen bond donors, namely glycerine (Gl), ethylene glycol (EG), triethylene glycol (TEG) and urea (U) were investigated. The toxicity of DESs was examined using In Vitro cell lines and In Vivo animal model. IC50 and selectivity index were determined for the DESs, their individual components and their combinations as aqueous solutions for comparison purposes. The cytotoxicity effect of DESs varied depending on cell lines. The IC50 for the GlDES, EGDES, UDES and TEGDES followed the sequence of TEGDES< GlDES< EGDES< UDES for OKF6, MCF-7, A375, HT29 and H413, respectively. GlDES was selective against MCF-7 and A375, EGDES was selective against MCF-7, PC3, HepG2 and HT29, UDES was selective against MCF-7, PC3, HepG2 and HT29, and TEGDES was selective against MCF-7 and A375. However, acute toxicity studies using ICR mice showed that these DESs were relatively toxic in comparison to their individual components. DES did not cause DNA damage, but it could enhance ROS production and induce apoptosis in treated cancer cells as evidenced by marked LDH release. Furthermore, the examined DESs showed less cytotoxicity compared with ionic liquids. To the best of our knowledge, this is the first time that combined In Vitro and In Vivo toxicity profiles of DESs were being demonstrated, raising the toxicity issue of these neoteric mixtures and their potential applicability to be used for therapeutic purposes.
In this work, the cytotoxicity and toxicity of phosphonium-based deep eutectic solvents (DESs) with three hydrogen bond donors, namely glycerine, ethylene glycol, and triethylene glycol were investigated. The cytotoxicity effect was tested using brine shrimp (Artemia salina). The toxicity was investigated using the two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus, and two Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. The cytotoxicity of tested DESs was much higher than that of their individual components, indicating their toxicological behavior was different. It was also found that there was toxic effect on the studied bacteria, indicating their potential application as anti-bacterial agents. To the best of our knowledge, this is the first time the cytotoxicity and toxicity of phosphonium-based DESs were studied.