METHODS: Modified three-point bending pliers were used as a device to create the closed rat tibial bone fracture that was prefixed with an intramedullary pin (23 G × 11/2″) in rats. The exact location of the induced closed fracture was along the long bone. The presence of bone comminution, and the fracture bone alignment were immediately examined after the induction of the fracture until the 6th week.
RESULTS: All fractures induced were transverse, located in the middle to proximal one third of the tibia, and they all healed without complications. Bone union as shown radiographically occurred within 2-3 weeks postoperative. The average angle of the fracture line with the axis of the tibia was 89.41 ± 2.11°. The lateral and anterio-posterior pin angulation views were 167.33 ± 3.67° and 161.60 ± 4.87° respectively. The average length of proximal end of the fractured bone in comparison with the whole length of intact bone was 41.02 ± 3.27%. There was a significant difference in percentage of the gross callus area and gross callus index, while there was no significant difference in X-ray callus index. There was no significant difference of the gross callus area between slight comminution (n = 4) and non comminution (n = 21).
CONCLUSION: The optimized rat tibial fracture model resulted in mainly transverse tibial mid-shaft fractures with minimal bone comminution and absence of surrounding soft tissue damage. The size area of consequent soft callus formation and the extent to which the closed fracture model was reproducible are very good outcomes making it feasible for in vivo laboratory research use.
METHODS: Forty-five postnatal Sprague-Dawley rat pups, 7-15 days old were divided into nine age groups (P7-P15). Five pups were allocated to each group. The rats were sacrificed and tibia and metatarsal bones were harvested. Bone lengths were measured after 0, 24, 48, and 72 hours of ex vivo incubation. Histology of bones was carried out, and GP lengths and chondrocyte densities were determined.
RESULTS: There were significant differences in bone length among the age groups after 0 and 72 hours of incubation. Histological sectioning was possible in metatarsal bone from all age groups, and in tibia from 7- to 13-day-old rats. No significant differences in tibia and metatarsal GP lengths were seen among different age groups at 0 and 72 hours of incubation. Significant differences in chondrocyte densities along the epiphyseal GP of the bones between 0 and 72 hours of incubation were observed in most of the age groups.
CONCLUSION: Ex vivo growth of tibia and metatarsal bones of rats aged 7-15 days old is possible, with percentage growth rates of 23.87 ± 0.80% and 40.38 ± 0.95% measured in tibia and metatarsal bone, respectively. Histological sectioning of bones was carried out without the need for decalcification in P7-P13 tibia and P7-P15 metatarsal bone. Increases in chondrocyte density along the GP influence overall bone elongation.