Displaying 1 publication

Abstract:
Sort:
  1. Halim Yap MFAA, Yahya MS, Sazelee N, Ali NA, Mustafa NS, Sulaiman NN, et al.
    ACS Omega, 2021 Jul 27;6(29):18948-18956.
    PMID: 34337234 DOI: 10.1021/acsomega.1c02208
    In this work, the catalytic effects of FeCl3 toward the hydrogen storage properties of the MgH2-Na3AlH6 composite were investigated for the first time. The temperature-programed desorption results indicated that the onset temperature of the hydrogen release of a 10 wt % FeCl3-doped MgH2-Na3AlH6 composite was ∼30 °C lower than that of the undoped MgH2-Na3AlH6 composite. The addition of FeCl3 into the MgH2-Na3AlH6 composite resulted in improved absorption and desorption kinetics performance. The absorption/desorption kinetics measurements at 320 °C (under 33 and 1 atm hydrogen pressure, respectively) indicated that within 10 min, the doped sample absorbed ∼4.0 wt % and desorbed ∼1.5 wt % hydrogen. By comparison, the undoped sample absorbed only ∼2.1 wt % and desorbed only ∼0.6 wt % hydrogen under the same conditions and time. Comparably, the apparent activation energy value of the doped composite is 128 kJ/mol, which is 12 kJ/mol lower than that of the undoped composite (140 kJ/mol). The formation of the new species of MgCl2 and Fe in the doped composite was detected from X-ray diffraction analysis after heating and absorption processes. These two components were believed to play a vital role in reducing the decomposition temperature and kinetics enhancement of the MgH2-Na3AlH6 composite.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links