Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Abdullah HM, Khairudin R, Fatimah wH
    Jurnal Psikologi Malaysia, 2014;olume 28:88-97.
    This study was carried out to determine the influence of LMX towards the SCB worker dimension in a national automotive company in Malaysia. There were 360 respondents from the automotive company involved in this study. Data collected from respondents were analysed using descriptive (demographic frequencies) and inferential statistics (correlation and regression analysis). The results showed that one of the four independent variables has a positive influence on SCB. In terms of the demographic factors, none of the variables (age, gender and period of service) made any significant difference on LMX and SCB, except the position category. Further suggestions regarding LMX and SCB are discussed based on the findings.
  2. Fazilah, N. F., Zani, N. F. A., Wasoh, H., Ariff, A., Halim, M.
    MyJurnal
    Nowadays, functional food market is dominated by dairy-based probiotic products, mainly
    yogurt. The nutritional values of yogurt can be further enhanced by the inclusion of miracle
    fruit (Synsepalum dulcificum) and potential probiotic Lactococcus lactis Gh1. The present
    work investigated the anti-oxidative capacity and survivability of probiotic strains of six
    yogurts fortified with S. dulcificum pulp extract and encapsulated L. lactis Gh1 (in
    alginate-starch coating agent via extrusion technique). The flavonoid contents (TFC) were not
    significantly different between yogurts, whereas the phenolic contents (TPC) showed an
    increasing trend throughout the storage. Among the yogurts, the one supplemented with both
    S. dulcificum and encapsulated L. lactis Gh1 showed the highest TFC (1.18 µg QE/mL) and
    TPC (15.382 μg GAE/mL). The antioxidant assay (DPPH) showed a gradual increase on the
    first 7 d, but decreased afterward. In comparison, yogurts fortified with S. dulcificum demonstrated higher antioxidant activity (± 80% DPPH inhibition) than the plain yogurts (± 50%
    DPPH inhibition). The viability of starter cultures (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) drastically increased during the first week (log 8 ~ 10
    CFU/mL) especially for yogurts containing free cell L. lactis, but subsequently decreased ( log
    6 ~ 8 CFU/mL). The viability of L. lactis Gh1 in yogurts maintained at high count (log 9.43
    and 9.04 CFU/mL) throughout 21 d when it was being encapsulated. In general, the fortification of S. dulcificum extract with microencapsulated L. lactis Gh1 had greatly enhanced the
    quality and potential benefits of the functional yogurts.
  3. Rozali A, Khairuddin H, Mohd Sidik S, Halim MA, Mohd Zin B, Sulaiman A
    Med J Malaysia, 2008 Jun;63(2):91-5.
    PMID: 18942290
    This paper describes the pattern of diving accidents treated in a military hospital-based recompression chamber facility in Peninsular Malaysia. A retrospective study was carried out to utilize secondary data from the respective hospital medical records from 1st January 1996 to 31st December 2004. A total of 179 cases categorized as diving accidents received treatment with an average of 20 cases per year. Out of 179 cases, 96.3% (n = 173) received recompression treatment. Majority were males (93.3%), civilians (87.2%) and non-Malaysian citizens (59.2%). Commercial diving activities contributed the highest percentage of diving accidents (48.0%), followed by recreational (39.2%) and military (12.8%). Diving accidents due to commercial diving (n = 86) were mainly contributed by underwater logging activities (87.2%). The most common cases sustained were decompression illness (DCI) (96.1%). Underwater logging and recreational diving activities which contribute to a significant number of diving accidents must be closely monitored. Notification, centralised data registration, medical surveillance as well as legislations related to diving activities in Malaysia are essential to ensure adequate monitoring of diving accidents in the future.
  4. Rozali A, Sulaiman A, Zin BM, Khairuddin H, Abd-Halim M, Mohd Sidik S
    Med J Malaysia, 2006 Oct;61(4):496-8.
    PMID: 17243532 MyJurnal
    Pulmonary overinflation syndrome (POIS) is a group of barotrauma-related diseases caused by the expansion of gas trapped in the lung, or over-pressurization of the lung with subsequent over-expansion and rupture of the alveolar air sacs. This group of disorders includes arterial gas embolism, tension pneumothorax, mediastinal emphysema, subcutaneous emphysema and rarely pneumopericardium. In the case of diving activities, POIS is rarely reported and is frequently related to unsafe diving techniques. We report a classical case of POIS in an underwater logger while cutting trees for logs in Tasik Kenyir, Terengganu. The patient, a 24-year-old worker, made a rapid free ascent to the surface after his breathing equipment malfunctioned while he was working underwater. He suffered from bilateral tension pneumothoraces, arterial gas embolism giving rise to multiple cerebral and cerebellar infarcts, mediastinal and subcutaneous emphysema as well as pneumopericardium. He was treated in a recompression chamber with hyperbaric oxygen therapy and discharged with residual weakness in his right leg.
  5. Nasran HS, Mohd Yusof H, Halim M, Abdul Rahman N
    Molecules, 2020 Jun 04;25(11).
    PMID: 32512825 DOI: 10.3390/molecules25112618
    Anthracnose is a fungal disease causing major losses in crop production. Chemical fungicides widely used in crop plantations to combat fungal infections can be a threat to the environment and humans in the long term. Recently, biofungicides have gained much interest as an alternative to chemical fungicides due to their environmentally friendly nature. Biofungicide products in powder form can be formulated using the freeze-drying technique to provide convenient storage. Protective agent formulation is needed in maintaining the optimal viable cells of biofungicide products. In this study, 8.10 log colony-forming unit (CFU)/mL was the highest cell viability of Paenibacillus polymyxa Kp10 at 22 h during incubation. The effects of several selected protective agents on the viability of P. polymyxa Kp10 after freeze-drying were studied. Response surface methodology (RSM) was used for optimizing formulation for the protective agents. The combination of lactose (10% w/v), skim milk (20% w/v), and sucrose (27.5% w/v) was found to be suitable for preserving P. polymyxa Kp10 during freeze-drying. Further, P. polymyxa Kp10 demonstrated the ability to inhibit fungal pathogens, Colletotrichum truncatum and C. gloeosporioides, at 60.18% and 66.52% of inhibition of radial growth, respectively.
  6. Ab Halim MAH, Rampal S, Devaraj NK, Badr IT
    Med J Malaysia, 2020 09;75(5):594-596.
    PMID: 32918435
    Morel-Lavallee lesions (MLL) are post-traumatic, closed internal degloving injuries that can result in severe complications if not diagnosed early. It is conventionally seen in cases of the high energy injuries of the pelvis and lower limb. The accumulation of extravasated blood, secondary to fracture and soft tissue damage may cause internal degloving injury, skin necrosis, soft tissue damage and acute osteomyelitis. We report here the clinical and radiological features in a 32-year-old male referred from the emergency department of a tertiary hospital who had sustained high energy motor vehicle accident. On examination, there was a fluctuant, mobile, non-tender subcutaneous mass over the distal arm with suspicion of internal degloving injury. Plain radiographs showed no fractures. Ultrasound showed a fluid collection with the presence of septations and echogenic debris within the collection. Extravasation was noted between subcutaneous tissue layer and fascia at the posterolateral aspect of the arm. Wound debridement under general anaesthesia was carried out. Intraoperative findings reported a significant amount of thick serous fluid with necrotic debris. Unhealthy skin and fat layers were debrided. Underlying muscles were found to be healthy. The results of the intraoperative fluid culture and sensitivity showed no growth. Negative pressure vacuum dressing was carried out. After five cycles of vacuum dressing, the wound showed signs of healing with an improved range of motion of the elbow. Orthopaedic surgeons need to be vigilant of the possibility of MLL in the upper limb as a differential diagnosis in the management of high energy trauma.
  7. Teworte S, Malcı K, Walls LE, Halim M, Rios-Solis L
    Biotechnol Adv, 2021 12 16;55:107888.
    PMID: 34923075 DOI: 10.1016/j.biotechadv.2021.107888
    Advanced fed-batch microbioreactors mitigate scale up risks and more closely mimic industrial cultivation practices. Recently, high throughput microscale feeding strategies have been developed which improve the accessibility of microscale fed-batch cultivation irrespective of experimental budget. This review explores such technologies and their role in accelerating bioprocess development. Diffusion- and enzyme-controlled feeding achieve a continuous supply of substrate while being simple and affordable. More complex feed profiles and greater process control require additional hardware. Automated liquid handling robots may be programmed to predefined feed profiles and have the sensitivity to respond to deviations in process parameters. Microfluidic technologies have been shown to facilitate both continuous and precise feeding. Holistic approaches, which integrate automated high-throughput fed-batch cultivation with strategic design of experiments and model-based optimisation, dramatically enhance process understanding whilst minimising experimental burden. The incorporation of real-time data for online optimisation of feed conditions can further refine screening. Although the technologies discussed in this review hold promise for efficient, low-risk bioprocess development, the expense and complexity of automated cultivation platforms limit their widespread application. Future attention should be directed towards the development of open-source software and reducing the exclusivity of hardware.
  8. Othman M, Ariff AB, Rios-Solis L, Halim M
    Front Microbiol, 2017;8:2285.
    PMID: 29209295 DOI: 10.3389/fmicb.2017.02285
    Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery.
  9. Othman M, Ariff AB, Wasoh H, Kapri MR, Halim M
    AMB Express, 2017 Nov 27;7(1):215.
    PMID: 29181600 DOI: 10.1186/s13568-017-0519-6
    Lactic acid bacteria are industrially important microorganisms recognized for fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Fermentation conditions such as concentration of initial glucose in the culture, concentration of lactic acid accumulated in the culture, types of pH control strategy, types of aeration mode and different agitation speed had influenced the cultivation performance of batch fermentation of Pediococcus acidilactici. The maximum viable cell concentration obtained in constant fed-batch fermentation at a feeding rate of 0.015 L/h was 6.1 times higher with 1.6 times reduction in lactic acid accumulation compared to batch fermentation. Anion exchange resin, IRA 67 was found to have the highest selectivity towards lactic acid compared to other components studied. Fed-batch fermentation of P. acidilactici coupled with lactic acid removal system using IRA 67 resin showed 55.5 and 9.1 times of improvement in maximum viable cell concentration compared to fermentation without resin for batch and fed-batch mode respectively. The improvement of the P. acidilactici growth in the constant fed-batch fermentation indicated the use of minimal and simple process control equipment is an effective approach for reducing by-product inhibition. Further improvement in the cultivation performance of P. acidilactici in fed-bath fermentation with in situ addition of anion-exchange resin significantly helped to enhance the growth of P. acidilactici by reducing the inhibitory effect of lactic acid and thus increasing probiotic production.
  10. Biswas K, Nazir A, Rahman MT, Khandaker MU, Idris AM, Islam J, et al.
    PLoS One, 2022;17(1):e0261427.
    PMID: 35085239 DOI: 10.1371/journal.pone.0261427
    Cost and safety are critical factors in the oil and gas industry for optimizing wellbore trajectory, which is a constrained and nonlinear optimization problem. In this work, the wellbore trajectory is optimized using the true measured depth, well profile energy, and torque. Numerous metaheuristic algorithms were employed to optimize these objectives by tuning 17 constrained variables, with notable drawbacks including decreased exploitation/exploration capability, local optima trapping, non-uniform distribution of non-dominated solutions, and inability to track isolated minima. The purpose of this work is to propose a modified multi-objective cellular spotted hyena algorithm (MOCSHOPSO) for optimizing true measured depth, well profile energy, and torque. To overcome the aforementioned difficulties, the modification incorporates cellular automata (CA) and particle swarm optimization (PSO). By adding CA, the SHO's exploration phase is enhanced, and the SHO's hunting mechanisms are modified with PSO's velocity update property. Several geophysical and operational constraints have been utilized during trajectory optimization and data has been collected from the Gulf of Suez oil field. The proposed algorithm was compared with the standard methods (MOCPSO, MOSHO, MOCGWO) and observed significant improvements in terms of better distribution of non-dominated solutions, better-searching capability, a minimum number of isolated minima, and better Pareto optimal front. These significant improvements were validated by analysing the algorithms in terms of some statistical analysis, such as IGD, MS, SP, and ER. The proposed algorithm has obtained the lowest values in IGD, SP and ER, on the other side highest values in MS. Finally, an adaptive neighbourhood mechanism has been proposed which showed better performance than the fixed neighbourhood topology such as L5, L9, C9, C13, C21, and C25. Hopefully, this newly proposed modified algorithm will pave the way for better wellbore trajectory optimization.
  11. Wilson JJ, Sing KW, Halim MR, Ramli R, Hashim R, Sofian-Azirun M
    Genet. Mol. Res., 2014;13(1):920-5.
    PMID: 24634112 DOI: 10.4238/2014.February.19.2
    Bats are important flagship species for biodiversity research; however, diversity in Southeast Asia is considerably underestimated in the current checklists and field guides. Incorporation of DNA barcoding into surveys has revealed numerous species-level taxa overlooked by conventional methods. Inclusion of these taxa in inventories provides a more informative record of diversity, but is problematic as these species lack formal description. We investigated how frequently documented, but undescribed, bat taxa are encountered in Peninsular Malaysia. We discuss whether a barcode library provides a means of recognizing and recording these taxa across biodiversity inventories. Tissue was sampled from bats trapped at Pasir Raja, Dungun Terengganu, Peninsular Malaysia. The DNA was extracted and the COI barcode region amplified and sequenced. We identified 9 species-level taxa within our samples, based on analysis of the DNA barcodes. Six specimens matched to four previously documented taxa considered candidate species but currently lacking formal taxonomic status. This study confirms the high diversity of bats within Peninsular Malaysia (9 species in 13 samples) and demonstrates how DNA barcoding allows for inventory and documentation of known taxa lacking formal taxonomic status.
  12. Rozali A, Rampal KG, Zin BM, Mohd Sidik S, Khairuddin H, Abd Halim M, et al.
    Med J Malaysia, 2006 Dec;61(5):647-50.
    PMID: 17623973 MyJurnal
    Underwater and Hyperbaric Medicine is a treatment modality gaining recognition in Malaysia. It uses the hyperbaric oxygen therapy (HBOT) approach where patients are placed in recompression chambers and subjected to oxygen therapy under pressure. In Malaysia it was introduced as early as the 1960's by the Royal Malaysian Navy to treat their divers for decompression illness (DCI), arterial gas embolism (AGE) and barotraumas. Other sectors in the armed forces, universities and private health centres began developing this approach too in the late 1990's, for similar purposes. In 1996, Underwater and Hyperbaric Medicine began gaining its popularity when the Institute of Underwater and Hyperbaric Medicine at the Armed Forces Hospital in Lumut started treating specific clinical diseases such as diabetic foot ulcers, osteomyelitis, and carbon monoxide poisoning and other diseases using HBOT. This paper discusses the development of this interesting treatment modality, giving a brief historical overview to its current development, as well as provides some thought for its future development in Malaysia.
  13. Oslan SNH, Tan JS, Abbasiliasi S, Ziad Sulaiman A, Saad MZ, Halim M, et al.
    Microorganisms, 2020 Oct 24;8(11).
    PMID: 33114463 DOI: 10.3390/microorganisms8111654
    Growth of mutant gdhA Pasteurella multocida B:2 was inhibited by the accumulation of a by-product, namely ammonium in the culture medium during fermentation. The removal of this by-product during the cultivation of mutant gdhA P. multocida B:2 in a 2 L stirred-tank bioreactor integrated with an internal column using cation-exchange adsorption resin for the improvement of cell viability was studied. Different types of bioreactor system (dispersed and internal) with resins were successfully used for ammonium removal at different agitation speeds. The cultivation in a bioreactor integrated with an internal column demonstrated a significant improvement in growth performance of mutant gdhA P. multocida B:2 (1.05 × 1011 cfu/mL), which was 1.6-fold and 8.4-fold as compared to cultivation with dispersed resin (7.2 × 1010 cfu/mL) and cultivation without resin (1.25 × 1010 cfu/mL), respectively. The accumulation of ammonium in culture medium without resin (801 mg/L) was 1.24-fold and 1.37-fold higher than culture with dispersed resin (642.50 mg/L) and culture in the bioreactor integrated with internal adsorption (586.50 mg/L), respectively. Results from this study demonstrated that cultivation in a bioreactor integrated with the internal adsorption column in order to remove ammonium could reduce the inhibitory effect of this by-product and improve the growth performance of mutant gdhA P. multocida B:2.
  14. Norizan NABM, Halim M, Tan JS, Abbasiliasi S, Mat Sahri M, Othman F, et al.
    Molecules, 2020 Jul 31;25(15).
    PMID: 32752106 DOI: 10.3390/molecules25153516
    Palm kernel cake (PKC) has been largely produced in Malaysia as one of the cheap and abundant agro-waste by-products from the palm oil industry and it contains high fiber (mannan) content. The present study aimed to produce β-mannanase by Bacillus subtilis ATCC11774 via optimization of the medium composition using palm kernel cake as substrate in semi-solid fermentation. The fermentation nutrients such as PKC, peptone, yeast extract, sodium chloride, magnesium sulphate (MgSO2), initial culture pH and temperature were screened using a Plackett-Burman design. The three most significant factors identified, PKC, peptone and NaCl, were further optimized using central composite design (CCD), a response surface methodology (RSM) approach, where yeast extract and MgSO2 were fixed as a constant factor. The maximum β-mannanase activity predicted by CCD under the optimum medium composition of 16.50 g/L PKC, 19.59 g/L peptone, 3.00 g/L yeast extract, 2.72 g/L NaCl and 0.2 g/L MgSO2 was 799 U/mL. The validated β-mannanase activity was 805.12 U/mL, which was close to the predicted β-mannanas activity. As a comparison, commercial media such as nutrient broth, M9 and Luria bertani were used for the production of β-mannanase with activities achieved at 204.16 ± 9.21 U/mL, 50.32 U/mL and 88.90 U/mL, respectively. The optimized PKC fermentation medium was four times higher than nutrient broth. Hence, it could be a potential fermentation substrate for the production of β-mannanase activity by Bacillus subtilis ATCC11774.
  15. Zainuddin MF, Fai CK, Ariff AB, Rios-Solis L, Halim M
    Microorganisms, 2021 Jan 27;9(2).
    PMID: 33513696 DOI: 10.3390/microorganisms9020251
    The production of lipids from oleaginous yeasts involves several stages starting from cultivation and lipid accumulation, biomass harvesting and finally lipids extraction. However, the complex and relatively resistant cell wall of yeasts limits the full recovery of intracellular lipids and usually solvent extraction is not sufficient to effectively extract the lipid bodies. A pretreatment or cell disruption method is hence a prerequisite prior to solvent extraction. In general, there are no recovery methods that are equally efficient for different species of oleaginous yeasts. Each method adopts different mechanisms to disrupt cells and extract the lipids, thus a systematic evaluation is essential before choosing a particular method. In this review, mechanical (bead mill, ultrasonication, homogenization and microwave) and nonmechanical (enzyme, acid, base digestions and osmotic shock) methods that are currently used for the disruption or permeabilization of oleaginous yeasts are discussed based on their principle, application and feasibility, including their effects on the lipid yield. The attempts of using conventional and "green" solvents to selectively extract lipids are compared. Other emerging methods such as automated pressurized liquid extraction, supercritical fluid extraction and simultaneous in situ lipid recovery using capturing agents are also reviewed to facilitate the choice of more effective lipid recovery methods.
  16. Mohd Zin NB, Mohamad Yusof B, Oslan SN, Wasoh H, Tan JS, Ariff AB, et al.
    AMB Express, 2017 Dec;7(1):131.
    PMID: 28651380 DOI: 10.1186/s13568-017-0433-y
    In recent years, many efforts have been directed to explore the methods to reduce the production costs of industrial lipase by improving the yield and the use of low-cost agricultural wastes. Coconut dregs, which is a lignocellulosic by-product from coconut oil and milk processing plants, is rich in cellulose (36%) and crude fat (9%). A newly isolated Bacillus stratosphericus has been demonstrated to perform cellulose hydrolysis on coconut dregs producing fermentable sugars. The highest extracellular lipase activity of 140 U/mL has been achieved in submerged fermentation with acid pre-treated coconut dregs. The lipase was found to be active over a wide range of temperatures and pHs. The activity of lipase can be generally increased by the presence of detergent ingredients such as Tween-80, cetyltrimethylammonium bromide, hydrogen peroxide and phosphate per sulphate. The great compatibility of lipase in commercial detergents has also underlined its potential as an additive ingredient in biodetergent formulations.
  17. Jawan R, Abbasiliasi S, Tan JS, Kapri MR, Mustafa S, Halim M, et al.
    Microorganisms, 2021 Mar 12;9(3).
    PMID: 33809201 DOI: 10.3390/microorganisms9030579
    Bacteriocin-like inhibitory substances (BLIS) produced by Lactococcus lactis Gh1 had shown antimicrobial activity against Listeria monocytogenes ATCC 15313. Brain Heart Infusion (BHI) broth is used for the cultivation and enumeration of lactic acid bacteria, but there is a need to improve the current medium composition for enhancement of BLIS production, and one of the approaches is to model the optimization process and identify the most appropriate medium formulation. Response surface methodology (RSM) and artificial neural network (ANN) models were employed in this study. In medium optimization, ANN (R2 = 0.98) methodology provided better estimation point and data fitting as compared to RSM (R2 = 0.79). In ANN, the optimal medium consisted of 35.38 g/L soytone, 16 g/L fructose, 3.25 g/L sodium chloride (NaCl) and 5.40 g/L disodium phosphate (Na2HPO4). BLIS production in optimal medium (717.13 ± 0.76 AU/mL) was about 1.40-fold higher than that obtained in nonoptimised (520.56 ± 3.37 AU/mL) medium. BLIS production was further improved by about 1.18 times higher in 2 L stirred tank bioreactor (787.40 ± 1.30 AU/mL) as compared to that obtained in 250 mL shake flask (665.28 ± 14.22 AU/mL) using the optimised medium.
  18. Jawan R, Abbasiliasi S, Tan JS, Mustafa S, Halim M, Ariff AB
    Microorganisms, 2020 Sep 23;8(10).
    PMID: 32977375 DOI: 10.3390/microorganisms8101454
    Antibacterial peptides or bacteriocins produced by many strains of lactic acid bacteria have been used as food preservatives for many years without any known adverse effects. Bacteriocin titres can be modified by altering the physiological and nutritional factors of the producing bacterium to improve the production in terms of yield and productivity. The effects of culture conditions (initial pH, inoculum age and inoculum size) and medium compositions (organic and inorganic nitrogen sources; carbon sources) were assessed for the production of bacteriocin-like inhibitory substances (BLIS) by Lactococcus lactis Gh1 in shake flask cultures. An inoculum of the mid-exponential phase culture at 1% (v/v) was the optimal age and size, while initial pH of culture media at alkaline and acidic state did not show a significant impact on BLIS secretion. Organic nitrogen sources were more favourable for BLIS production compared to inorganic sources. Production of BLIS by L. lactis Gh1 in soytone was 1.28-times higher as compared to that of organic nitrogen sources ((NH4)2SO4). The highest cell concentration (XmX = 0.69 ± 0.026 g·L-1) and specific growth rate (μmax = 0.14 h-1) were also observed in cultivation using soytone. By replacing carbon sources with fructose, BLIS production was increased up to 34.94% compared to BHI medium, which gave the biomass cell concentration and specific growth rate of 0.66 ± 0.002 g·L-1 and 0.11 h-1, respectively. It can be concluded that the fermentation factors have pronounced influences on the growth of L. lactis Gh1 and BLIS production. Results from this study could be used for subsequent application in process design and optimisation for improving BLIS production by L. lactis Gh1 at larger scale.
  19. Halim MA, Choo QC, Ghazali AHA, Wajidi MFF, Najimudin N
    Lett Appl Microbiol, 2021 May;72(5):610-618.
    PMID: 33525052 DOI: 10.1111/lam.13455
    Paenibacillus durus strain ATCC 35681T is a Gram-positive diazotroph that displayed capability of fixing nitrogen even in the presence of nitrate or ammonium. However, the nitrogen fixation activity was detected only at day 1 of growth when cultured in liquid nitrogen-enriched medium. The transcripts of all the nifH homologues were present throughout the 9-day study. When grown in nitrogen-depleted medium, nitrogenase activities occurred from day 1 until day 6 and the nifH transcripts were also present during the course of the study albeit at different levels. In both studies, the absence of nitrogen fixation activity regardless of the presence of the nifH transcripts raised the possibility of a post-transcriptional or post-translational regulation of the system. A putative SigA box sequence was found upstream of the transcription start site of nifB1, the first gene in the major nitrogen fixation cluster. The upstream region of nifB2 showed a promoter recognizable by SigE, a sigma factor normally involved in sporulation.
  20. Takaoka H, Sofian-Azirun M, Chen CD, Lau KW, Halim MRA, Low VL, et al.
    Trop Biomed, 2018 Dec 01;35(4):951-974.
    PMID: 33601844
    Simulium (Gomphostilbia) dhangi sp. nov., S. (G.) sumbaense sp. nov. and S. (Nevermannia) wayani sp. nov. are described from the Lesser Sunda Archipelago, Indonesia. Simulium (G.) sumbaense sp. nov. is placed in the S. varicorne species-group and is characterized by the pupal gill with eight filaments arranged as (1+1+1+1+2)+2 from dorsal to ventral, while S. (G.) dhangi sp. nov., unplaced to group, is characterized by the pupal gill composed of two inflated trunks and four slender filaments all arising basally, and the short larval antenna as long as the stem of the labral fan. Simulium (N.) wayani sp. nov. belongs to the S. ruficorne species-group and is characterized by the female spermatheca with an unsclerotized neck, and pupal gill with four inflated filaments. The number of species of black flies from the archipelago increases from 19 to 22.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links