METHODS: A prospective randomized study was conducted in a single-center adult intensive care unit. In total, 100 patients were randomized into two groups. These patients underwent internal jugular vein central venous catheter cannulation with ultrasound guidance (short-axis scan, out-of-plane needling approach) in which one group adopted conventional method, while the other group was aided with the guided positioning system. Outcomes were measured by procedural efficacy (success rate, number of attempts, time to successful cannulation), complications, level of operators' experience, and their satisfaction.
RESULTS: All patients had successful cannulation on the first attempt except for one case in the conventional group. The median performance time for the guided positioning system method was longer (25.5 vs 15.5 s; p = 0.01). And 86% of the operators had more than 3-year experience in anesthesia. One post-insertion hematoma occurred in the conventional group. Only 88% of the operators using the guided positioning system method were satisfied compared to 100% in the conventional group.
CONCLUSION: Ultrasound-guided central venous catheter insertion via internal jugular vein was a safe procedure in both conventional and guided positioning system methods. The guided positioning system did not confer additional benefit but was associated with slower performance time and lower satisfaction level among the experienced operators.
DESIGN: This was a single-center prospective observational study that compared resting energy expenditure estimated by 15 commonly used predictive equations against resting energy expenditure measured by indirect calorimetry at different phases. Degree of agreement between resting energy expenditure calculated by predictive equations and resting energy expenditure measured by indirect calorimetry was analyzed using intraclass correlation coefficient and Bland-Altman analyses. Resting energy expenditure values calculated from predictive equations differing by ± 10% from resting energy expenditure measured by indirect calorimetry was used to assess accuracy. A score ranking method was developed to determine the best predictive equations.
SETTING: General Intensive Care Unit, University of Malaya Medical Centre.
PATIENTS: Mechanically ventilated critically ill patients.
INTERVENTIONS: None.
MEASUREMENTS AND MAIN RESULTS: Indirect calorimetry was measured thrice during acute, late, and chronic phases among 305, 180, and 91 ICU patients, respectively. There were significant differences (F= 3.447; p = 0.034) in mean resting energy expenditure measured by indirect calorimetry among the three phases. Pairwise comparison showed mean resting energy expenditure measured by indirect calorimetry in late phase (1,878 ± 517 kcal) was significantly higher than during acute phase (1,765 ± 456 kcal) (p = 0.037). The predictive equations with the best agreement and accuracy for acute phase was Swinamer (1990), for late phase was Brandi (1999) and Swinamer (1990), and for chronic phase was Swinamer (1990). None of the resting energy expenditure calculated from predictive equations showed very good agreement or accuracy.
CONCLUSIONS: Predictive equations tend to either over- or underestimate resting energy expenditure at different phases. Predictive equations with "dynamic" variables and respiratory data had better agreement with resting energy expenditure measured by indirect calorimetry compared with predictive equations developed for healthy adults or predictive equations based on "static" variables. Although none of the resting energy expenditure calculated from predictive equations had very good agreement, Swinamer (1990) appears to provide relatively good agreement across three phases and could be used to predict resting energy expenditure when indirect calorimetry is not available.
METHODS: Using indirect calorimetry, REE was measured at acute (≤5 days; n = 294) and late (≥6 days; n = 180) phases of intensive care unit admission. PEs were developed by multiple linear regression. A multi-fold cross-validation approach was used to validate the PEs. The best PEs were selected based on the highest coefficient of determination (R2), the lowest root mean square error (RMSE) and the lowest standard error of estimate (SEE). Two PEs developed from paired 168-patient data were compared with measured REE using mean absolute percentage difference.
RESULTS: Mean absolute percentage difference between predicted and measured REE was <20%, which is not clinically significant. Thus, a single PE was developed and validated from data of the larger sample size measured in the acute phase. The best PE for REE (kcal/day) was 891.6(Height) + 9.0(Weight) + 39.7(Minute Ventilation)-5.6(Age) - 354, with R2 = 0.442, RMSE = 348.3, SEE = 325.6 and mean absolute percentage difference with measured REE was: 15.1 ± 14.2% [acute], 15.0 ± 13.1% [late].
CONCLUSIONS: Separate PEs for acute and late phases may not be necessary. Thus, we have developed and validated a PE from acute phase data and demonstrated that it can provide optimal estimates of REE for patients in both acute and late phases.
TRIAL REGISTRATION: ClinicalTrials.gov NCT03319329.