FINDINGS: The mitochondria-encoded cytochrome c oxidase subunit I (COI), 12S rRNA, and 16S rRNA genes and the nuclear-encoded 28S rRNA gene support the conspecific status of S. nodosum from Myanmar, Thailand, and Vietnam and S. shirakii from Taiwan; 0 to 0.19 % genetic differences between the two taxa suggest intraspecific polymorphism. The banding patterns of the polytene chromosomes of the insular Taiwanese population of S. shirakii and mainland populations of S. nodosum are congruent. The overlapping ranges of habitat characteristics and hosts of S. nodosum and S. shirakii corroborate the chromosomal, molecular, and morphological data.
CONCLUSIONS: Four independent sources of evidence (chromosomes, DNA, ecology, and morphology) support the conspecificity of S. nodosum and S. shirakii. We, therefore, synonymize S. shirakii with S. nodosum. This study provides a guide for applying the procedure of testing conspecificity to other sets of allopatric vectors.
METHODS: Genomic DNA of Indonesian black fly samples were extracted and sequenced, producing 86 COI sequences in total. Two hundred four COI sequences, including 118 GenBank sequences, were analysed. Maximum likelihood (ML) and Bayesian inference (BI) trees were constructed and species delimitation analyses, including ASAP, GMYC and single PTP, were performed to determine whether the species of Indonesian black flies could be delineated. Intra- and interspecific genetic distances were also calculated and the efficacy of COI sequences for species identification was tested.
RESULTS: The DNA barcodes successfully distinguished most morphologically distinct species (> 80% of sampled taxa). Nonetheless, high maximum intraspecific distances (3.32-13.94%) in 11 species suggested cryptic diversity. Notably, populations of the common taxa Simulium (Gomphostilbia) cheongi, S. (Gomphostilbia) sheilae, S. (Nevermannia) feuerborni and S. (Simulium) tani in the islands of Indonesia were genetically distinct from those on the Southeast Asian mainland (Malaysia and Thailand). Integrated morphological, cytogenetic and nuclear DNA studies are warranted to clarify the taxonomic status of these more complex taxa.
CONCLUSIONS: The findings showed that COI barcoding is a promising taxonomic tool for Indonesian black flies. The DNA barcodes will aid in correct identification and genetic study of Indonesian black flies, which will be helpful in the control and management of potential vector species.
METHODOLOGY/PRINCIPAL FINDINGS: This article synthesizes findings from the first international symposium on ticks and TBDs in Southeast Asia, held in Phnom Penh on June 22 and 23, 2023. It highlights regional efforts to understand tick ecology and pathogen transmission. This paper proposes to present a summary of the various presentations given during the symposium following 3 main parts. The first one is devoted to the state of knowledge regarding ticks and TBDs in SEA countries, with presentations from 6 different countries, namely Cambodia, Indonesia, Laos, Malaysia, Thailand, and Vietnam. The second part focuses on the development of new research approaches on tick-borne pathogens (TBPs) and TBDs. The last part is a summary of the round table discussion held on the final day, with the aim of defining the most important challenges and recommendations for researches on TBP and TBD in the SEA region.
CONCLUSIONS/SIGNIFICANCE: Key topics discussed include advancements in diagnostic tools, such as MALDI-TOF MS and proteomics, and the development of sustainable strategies for tick management and disease prevention. The symposium facilitated the exchange of knowledge and collaborative networks among experts from various disciplines, promoting a unified approach to tackling TBDs in the region. The symposium underscored the need for enhanced surveillance, diagnostics, and inter-regional cooperation to manage the threat of TBDs effectively. Recommendations include the establishment of a regional database for tick identification and the expansion of vector competence studies. These initiatives are crucial for developing targeted interventions and understanding the broader implications of climate change and urbanization on the prevalence of TBDs.
METHODS: A total of 392 ticks and 248 fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam, and molecularly screened for the presence of pathogens. Ticks were tested for Rickettsia spp., Anaplasma spp., Ehrlichia spp., Babesia spp. and Hepatozoon spp. while fleas were screened for the presence of Rickettsia spp. and Bartonella spp.
RESULT: Of the 392 ticks tested, 37 (9.4%) scored positive for at least one pathogen with Hepatozoon canis being the most prevalent (5.4%), followed by Ehrlichia canis (1.8%), Babesia vogeli (1%), Anaplasma platys (0.8%) and Rickettsia spp. (1%) [including Rickettsia sp. (0.5%), Rickettsia asembonensis (0.3%) and Rickettsia felis (0.3%)]. Out of 248 fleas tested, 106 (42.7%) were harboring at least one pathogen with R. felis being the most common (19.4%), followed by Bartonella spp. (16.5%), Rickettsia asembonensis (10.9%) and "Candidatus Rickettsia senegalensis" (0.4%). Furthermore, 35 Rhipicephalus sanguineus ticks were subjected to phylogenetic analysis, of which 34 ticks belonged to the tropical and only one belonged to the temperate lineage (Rh. sanguineus (sensu stricto)).
CONCLUSION: Our data reveals the circulation of different VBPs in ticks and fleas of dogs and cats from Asia, including zoonotic agents, which may represent a potential risk to animal and human health.
METHODS: We explored the nature and extent of zoonotic internal (endo-) and external (ecto-) parasites and arthropod-borne pathogens in 2381 client-owned dogs and cats living in metropolitan areas of eight countries in East and Southeast Asia using reliable diagnostic tests and then undertook extensive statistical analyses to define predictors of exposure to zoonotic pathogens.
RESULTS: The estimated ORs for overall parasite infections are 1.35 [95% CIs 1.07;1.71] in young animals and 4.10 [1.50;11.2] in the animal group older than 15 years as compared with adult animals, 0.61 [0.48;0.77] in neutered animals as compared to unneutered animals, 0.36 [0.26;0.50] in animals living in urban areas as compared with rural areas, 1.14 [1.08;1.21] for each 1 °C increase of annual mean temperature which varies from 12.0 to 28.0 °C, and 0.86 [0.78;0.95] for each year of life expectancy which varies from 70.9 to 83.3 years.
CONCLUSIONS: Here we highlight the influence of human life expectancy and the neutering status of the animals, which reflect increased living standards through access to education and human and veterinary health care, to be both strongly associated with exposure to zoonotic parasites. An integrated approach of local and international authorities to implement and manage educational programs will be crucial for the control of zoonotic infections of companion animals in Asia.