METHODS: The review protocol was registered in the PROSPERO database (CRD42017071899). A literature search was performed in the MEDLINE and EBSCOhost databases until June 2017 with no language restriction. Randomized controlled trials evaluating the efficacy of oral premedications, whether given alone or in combination, compared with other agents, placebo, or no treatment in adult patients before NSRCT for postoperative pain were included. Nonintervention studies, nonendodontic studies, animal studies, and reviews were excluded. The quality of the studies was assessed using the revised Cochrane risk of bias tool. Pair-wise meta-analysis, network meta-analysis, and quality of evidence assessment using the Grading of Recommendations Assessment, Development and Evaluation criteria was performed.
RESULTS: Eleven studies comparing pharmacologic groups of medications were included in the primary analysis. Compared with placebo, corticosteroids (prednisolone 30-40 mg) was ranked best for reducing postoperative pain (median difference [MD] = -18.14 [95% confidence interval (CI), -32.90 to -3.37] for the pain score at 6 hours; MD = -22.17 [95% CI, -36.03 to -8.32] for the pain score at 12 hours; and MD = -21.50 [95% CI, -37.95 to -5.06] for the pain score at 24 hours). However, the evidence was very low (6 and 24 hours) to moderate quality (12 hours). Nonsteroidal anti-inflammatory drugs were ranked least among the medications, and the quality of this evidence was very low. Additional analysis based on the chemical name showed that sulindac, ketorolac, and ibuprofen significantly reduced pain at 6 hours, whereas piroxicam and prednisolone significantly reduced the pain at 12 and 24 hours. Etodolac was found to be least effective in reducing pain. Overall, the evidence was of moderate to very low quality.
CONCLUSIONS: Based on the limited and low-quality evidence, oral premedication with piroxicam or prednisolone could be recommended for controlling postoperative pain after NSRCT. However, more trials are warranted to confirm the results with a higher quality of evidence.
METHODS: PubMed, EBSCOhost, and Scopus databases were searched. Additional searching was performed in clinical trial registry, reference lists of systematic reviews, and textbooks. Randomized clinical trials (RCTs) published in the English language through October 2017 comparing the success of pulpotomies in vital primary molars with a follow-up of at least 6 months were selected. Study selection, data extraction, and risk of bias assessment were performed. MA by random effects model, TSA, and GRADE were performed.
RESULTS: Eight RCTs (n = 474) were included. Two RCTs had low risk of bias. No significant difference was observed between MTA and BD in clinical success at 6 months (risk ratio [RR], 1.00; 95% confidence interval [95% CI], 0.97-1.02; I2 = 0%), 12 months (RR, 1.00; 95% CI, 0.96-1.05; I2 = 0%), and 18 months (RR, 1.00; 95% CI, 0.93-1.08; I2 = 0%). No difference was observed in radiographic success at follow-up of 6 months (RR, 0.99; 95% CI, 0.96-1.02; I2 = 0%), 12 months (RR, 1.02; 95% CI, 0.47-2.21; I2 = 0%), and 18 months (RR, 1.02; 95% CI, 0.91-1.15; I2 = 0%). TSA indicated lack of firm evidence for the results of the meta-analytic outcomes on clinical and radiographic success. GRADE assessed the evidence from the MA comparing the effect of MTA and BD in pulpotomy to be of low quality.
CONCLUSION: BD and MTA have similar clinical and radiographic success rates based on limited and low-quality evidence. Future high-quality RCTs between MTA and BD is required to confirm the evidence.