Displaying all 20 publications

Abstract:
Sort:
  1. Diwan D, Sharma M, Tabatabaei M, Gupta VK
    Nat Food, 2021 Dec;2(12):924-925.
    PMID: 37118249 DOI: 10.1038/s43016-021-00438-y
  2. Bhaskaran M, Devegowda VG, Gupta VK, Shivachar A, Bhosale RR, Arunachalam M, et al.
    ACS Chem Neurosci, 2020 10 07;11(19):2962-2977.
    PMID: 32945654 DOI: 10.1021/acschemneuro.0c00555
    Glioblastoma multiforme (GBM), a standout among the most dangerous class of central nervous system (CNS) cancer, is most common and is an aggressive malignant brain tumor in adults. In spite of developments in modality therapy, it remains mostly incurable. Consequently, the need for novel systems, strategies, or therapeutic approaches for enhancing the assortment of active agents meant for GBM becomes an important criterion. Currently, cancer research focuses mainly on improving the treatment of GBM via diverse novel drug delivery systems. The treatment options at diagnosis are multimodal and include radiation therapy. Moreover, significant advances in understanding the molecular pathology of GBM and associated cell signaling pathways have opened opportunities for new therapies. Innovative treatment such as immunotherapy also gives hope for enhanced survival. The objective of this work was to collect and report the recent research findings to manage GBM. The present review includes existing novel drug delivery systems and therapies intended for managing GBM. Reported novel drug delivery systems and diverse therapies seem to be precise, secure, and relatively effective, which could lead to a new track for the obliteration of GBM.
  3. Chai WS, Tan WG, Halimatul Munawaroh HS, Gupta VK, Ho SH, Show PL
    Environ Pollut, 2021 Jan 15;269:116236.
    PMID: 33333449 DOI: 10.1016/j.envpol.2020.116236
    Microalgae have become imperative for biological wastewater treatment. Its capability in biological purification of wastewaters from different origins while utilizing wastewater as the substrate for growth has manifest great potentials as a sustainable and economical wastewater treatment method. The wastewater grown microalgae have also been remarked in research to be a significant source of value-added bioproducts and biomaterial. This paper highlights the multifaceted roles of microalgae in wastewater treatment from the extent of microalgal bioremediation function to environmental amelioration with the involvement of microalgal biomass productivity and carbon dioxide fixation. Besides, the uptake mechanism of microalgae in wastewater treatment was discussed in detail with illustrations for a comprehensive understanding of the removal process of undesirable substances. The performance of different microalgae species in the uptake of various substances was studied and summarized in this review. The correlation of microalgal treatment efficacy with various algal strain types and the bioreactors harnessed for cultivation systems was also discussed. Studies on the alternatives to conventional wastewater treatment processes and the integration of microalgae with accordant wastewater treatment methods are presented. Current research on the biological and technical approaches for the modification of algae-based wastewater system and the maximization of biomass production is also reviewed and discussed. The last portion of the review is dedicated to the assertion of challenges and future perspectives on the development of microalgae-based wastewater treatment technology. This review serves as a useful and informative reference for readers regarding the multifaceted roles of microalgae in the application of wastewater biotreatment with detailed discussion on the uptake mechanism.
  4. Prabha R, Singh DP, Gupta S, Gupta VK, El-Enshasy HA, Verma MK
    Microorganisms, 2019 Nov 23;7(12).
    PMID: 31771141 DOI: 10.3390/microorganisms7120608
    Multifunctionalities linked with the microbial communities associated with the millet crop rhizosphere has remained unexplored. In this study, we are analyzing microbial communities inhabiting rhizosphere of kodo millet and their associated functions and its impact over plant growth and survival. Metagenomics of Paspalum scrobiculatum L.(kodo millet) rhizopshere revealed taxonomic communities with functional capabilities linked to support growth and development of the plants under nutrient-deprived, semi-arid and dry biotic conditions. Among 65 taxonomically diverse phyla identified in the rhizobiome, Actinobacteria were the most abundant followed by the Proteobacteria. Functions identified for different genes/proteins led to revelations that multifunctional rhizobiome performs several metabolic functions including carbon fixation, nitrogen, phosphorus, sulfur, iron and aromatic compound metabolism, stress response, secondary metabolite synthesis and virulence, disease, and defense. Abundance of genes linked with N, P, S, Fe and aromatic compound metabolism and phytohormone synthesis-along with other prominent functions-clearly justifies growth, development, and survival of the plants under nutrient deprived dry environment conditions. The dominance of actinobacteria, the known antibiotic producing communities shows that the kodo rhizobiome possesses metabolic capabilities to defend themselves against biotic stresses. The study opens avenues to revisit multi-functionalities of the crop rhizosphere for establishing link between taxonomic abundance and targeted functions that help plant growth and development in stressed and nutrient deprived soil conditions. It further helps in understanding the role of rhizosphere microbiome in adaptation and survival of plants in harsh abiotic conditions.
  5. Sharma VK, Sharma M, Usmani Z, Pandey A, Singh BN, Tabatabaei M, et al.
    Trends Biotechnol, 2022 Feb 07.
    PMID: 35144849 DOI: 10.1016/j.tibtech.2022.01.009
    Enzymes have the potential for biotransformation in the food industry. Engineering tools can be used to develop tailored enzymes for food-packaging systems that perform well and retain their activity under adverse conditions. Consequently, novel tailored enzymes have been produced to improve or include new and useful characteristics for intelligent food-packaging systems. This review discusses the protein-engineering tools applied to create new functionality in food-packaging enzymes. The challenges in applications and anticipated directions for future developments are also highlighted. The development and discovery of tailored enzymes for smart food packaging is a promising way to ensure safe and high-quality food products.
  6. Sudheer S, Bai RG, Muthoosamy K, Tuvikene R, Gupta VK, Manickam S
    Environ Res, 2022 03;204(Pt A):111963.
    PMID: 34450157 DOI: 10.1016/j.envres.2021.111963
    The demand for the green synthesis of nanoparticles has gained prominence over the conventional chemical and physical syntheses, which often entails toxic chemicals, energy consumption and ultimately lead to negative environmental impact. In the green synthesis approach, naturally available bio-compounds found in plants and fungi can be effective and have been proven to be alternative reducing agents. Fungi or mushrooms are particularly interesting due to their high content of bioactive compounds, which can serve as excellent reducing agents in the synthesis of nanoparticles. Apart from the economic and environmental benefits, such as ease of availability, low synthesis/production cost, safe and no toxicity, the nanoparticles synthesized from this green method have unique physical and chemical properties. Stabilisation of the nanoparticles in an aqueous solution is exceedingly high, even after prolonged storage with unperturbed size uniformity. Biological properties were significantly improved with higher biocompatibility, anti-microbial, anti-oxidant and anti-cancer properties. These remarkable properties allow further exploration in their applications both in the medical and agricultural fields. This review aims to explore the mushroom-mediated biosynthesis of nanomaterials, specifically the mechanism and bio-compounds involved in the synthesis and their interactions for the stabilisation of nanoparticles. Various metal and non-metal nanoparticles have been discussed along with their synthesis techniques and parameters, making them ideal for specific industrial, agricultural, and medical applications. Only recent developments have been explored in this review.
  7. Yang Y, Aghbashlo M, Gupta VK, Amiri H, Pan J, Tabatabaei M, et al.
    Int J Biol Macromol, 2023 May 01;236:123954.
    PMID: 36898453 DOI: 10.1016/j.ijbiomac.2023.123954
    Large amounts of agricultural waste, especially marine product waste, are produced annually. These wastes can be used to produce compounds with high-added value. Chitosan is one such valuable product that can be obtained from crustacean wastes. Various biological activities of chitosan and its derivatives, especially antimicrobial, antioxidant, and anticancer properties, have been confirmed by many studies. The unique characteristics of chitosan, especially chitosan nanocarriers, have led to the expansion of using chitosan in various sectors, especially in biomedical sciences and food industries. On the other hand, essential oils, known as volatile and aromatic compounds of plants, have attracted the attention of researchers in recent years. Like chitosan, essential oils have various biological activities, including antimicrobial, antioxidant, and anticancer. In recent years, one of the ways to improve the biological properties of chitosan is to use essential oils encapsulated in chitosan nanocarriers. Among the various biological activities of chitosan nanocarriers containing essential oils, most studies conducted in recent years have been in the field of antimicrobial activity. It was documented that the antimicrobial activity was increased by reducing the size of chitosan particles in the nanoscale. In addition, the antimicrobial activity was intensified when essential oils were in the structure of chitosan nanoparticles. Essential oils can increase the antimicrobial activity of chitosan nanoparticles with synergistic effects. Using essential oils in the structure of chitosan nanocarriers can also improve the other biological properties (antioxidant and anticancer activities) of chitosan and increase the application fields of chitosan. Of course, using essential oils in chitosan nanocarriers for commercial use requires more studies, including stability during storage and effectiveness in real environments. This review aims to overview recent studies on the biological effects of essential oils encapsulated in chitosan nanocarriers, with notes on their biological mechanisms.
  8. Yang Y, Gupta VK, Du Y, Aghbashlo M, Show PL, Pan J, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124800.
    PMID: 37178880 DOI: 10.1016/j.ijbiomac.2023.124800
    Mucilages are natural compounds consisting mainly of polysaccharides with complex chemical structures. Mucilages also contain uronic acids, proteins, lipids, and bioactive compounds. Because of their unique properties, mucilages are used in various industries, including food, cosmetics, and pharmaceuticals. Typically, commercial gums are composed only of polysaccharides, which increase their hydrophilicity and surface tension, reducing their emulsifying ability. As a result of the presence of proteins in combination with polysaccharides, mucilages possess unique emulsifying properties due to their ability to reduce surface tension. In recent years, various studies have been conducted on using mucilages as emulsifiers in classical and Pickering emulsions because of their unique emulsifying feature. Studies have shown that some mucilages, such as yellow mustard, mutamba, and flaxseed mucilages, have a higher emulsifying capacity than commercial gums. A synergistic effect has also been shown in some mucilages, such as Dioscorea opposita mucilage when combined with commercial gums. This review article investigates whether mucilages can be used as emulsifiers and what factors affect their emulsifying properties. A discussion of the challenges and prospects of using mucilages as emulsifiers is also presented in this review.
  9. Yang Y, Gupta VK, Amiri H, Pan J, Aghbashlo M, Tabatabaei M, et al.
    Int J Biol Macromol, 2023 Jun 01;239:124210.
    PMID: 37001778 DOI: 10.1016/j.ijbiomac.2023.124210
    Chitosan is one of the valuable products obtained from crustacean waste. The unique characteristics of chitosan (antimicrobial, antioxidant, anticancer, and anti-inflammatory) have increased its application in various sectors. Besides unique biological properties, chitosan or chitosan-based compounds can stabilize emulsions. Nevertheless, studies have shown that chitosan cannot be used as an efficient stabilizer because of its high hydrophilicity. Hence, this review aims to provide an overview of recent studies dealing with improving the emulsifying properties of chitosan. In general, two different approaches have been reported to improve the emulsifying properties of chitosan. The first approach tries to improve the stabilization property of chitosan by modifying its structure. The second one uses compounds such as polysaccharides, proteins, surfactants, essential oils, and polyphenols with more wettability and emulsifying properties than chitosan's particles in combination with chitosan to create complex particles. The tendency to use chitosan-based particles to stabilize Pickering emulsions has recently increased. For this reason, more studies have been conducted in recent years to improve the stabilizing properties of chitosan-based particles, especially using the electrostatic interaction method. In the electrostatic interaction method, numerous research has been conducted on using proteins and polysaccharides to increase the stabilizing property of chitosan.
  10. Aghbashlo M, Amiri H, Moosavi Basri SM, Rastegari H, Lam SS, Pan J, et al.
    Trends Biotechnol, 2023 Jun;41(6):785-797.
    PMID: 36535818 DOI: 10.1016/j.tibtech.2022.11.009
    Chitosan, an amino polysaccharide mostly derived from crustaceans, has been recently highlighted for its biological activities that depend on its molecular weight (MW), degree of deacetylation (DD), and acetylation pattern (AP). More importantly, for some advanced biomaterials, the homogeneity of the chitosan structure is an important factor in determining its biological activity. Here we review emerging enzymes and cell factories, respectively, for in vitro and in vivo preparation of chitosan oligosaccharides (COSs), focusing on advances in the analysis of the AP and structural modification of chitosan to tune its functions. By 'mapping' current knowledge on chitosan's in vitro and in vivo activity with its MW and AP, this work could pave the way for future studies in the field.
  11. He Y, Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Gupta VK, Peng W, Lam SS, et al.
    Environ Pollut, 2024 Feb 01;342:123081.
    PMID: 38072018 DOI: 10.1016/j.envpol.2023.123081
    E-waste, encompassing discarded materials from outdated electronic equipment, often ends up intermixed with municipal solid waste, leading to improper disposal through burial and incineration. This improper handling releases hazardous substances into water, soil, and air, posing significant risks to ecosystems and human health, ultimately entering the food chain and water supply. Formal e-waste recycling, guided by circular economy models and zero-discharge principles, offers potential solutions to this critical challenge. However, implementing a circular economy for e-waste management due to chemical and energy consumption may cause environmental impacts. Consequently, advanced sustainability assessment tools, such as Life Cycle Assessment (LCA), have been applied to investigate e-waste management strategies. While LCA is a standardized methodology, researchers have employed various routes for environmental assessment of different e-waste management methods. However, to the authors' knowledge, there lacks a comprehensive study focusing on LCA studies to discern the opportunities and limitations of this method in formal e-waste management strategies. Hence, this review aims to survey the existing literature on the LCA of e-waste management under a circular economy, shedding light on the current state of research, identifying research gaps, and proposing future research directions. It first explains various methods of managing e-waste in the circular economy. This review then evaluates and scrutinizes the LCA approach in implementing the circular bioeconomy for e-waste management. Finally, it proposes frameworks and procedures to enhance the applicability of the LCA method to future e-waste management research. The literature on the LCA of e-waste management reveals a wide variation in implementing LCA in formal e-waste management, resulting in diverse results and findings in this field. This paper underscores that LCA can pinpoint the environmental hotspots for various pathways of formal e-waste recycling, particularly focusing on metals. It can help address these concerns and achieve greater sustainability in e-waste recycling, especially in pyrometallurgical and hydrometallurgical pathways. The recovery of high-value metals is more environmentally justified compared to other metals. However, biometallurgical pathways remain limited in terms of environmental studies. Despite the potential for recycling e-waste into plastic or glass, there is a dearth of robust background in LCA studies within this sector. This review concludes that LCA can offer valuable insights for decision-making and policy processes on e-waste management, promoting environmentally sound e-waste recycling practices. However, the accuracy of LCA results in e-waste recycling, owing to data requirements, subjectivity, impact category weighting, and other factors, remains debatable, emphasizing the need for more uncertainty analysis in this field.
  12. Ranjbari M, Esfandabadi ZS, Ferraris A, Quatraro F, Rehan M, Nizami AS, et al.
    Chemosphere, 2022 Feb 15.
    PMID: 35181422 DOI: 10.1016/j.chemosphere.2022.133968
    Investment in biofuels as sustainable alternatives for fossil fuels has gained momentum over the last decade due to the global environmental and health concerns regarding fossil fuel consumption. Hence, effective management of biofuel supply chain (BSC) components, including biomass feedstock production, biomass logistics, biofuel production in biorefineries, and biofuel distribution to consumers, is crucial in transitioning towards a low-carbon and circular economy (CE). The present study aims to render an inclusive knowledge map of the BSC-related scientific production. In this vein, a systematic review, supported by a keywords co-occurrence analysis and qualitative content analysis, was carried out on a total of 1975 peer-reviewed journal articles in the target literature. The analysis revealed four major research hotspots in the BSC literature, including (1) biomass-to-biofuel supply chain design and planning, (2) environmental impacts of biofuel production, (3) biomass to bioenergy, and (4) techno-economic analysis of biofuel production. Besides, the findings showed that the following subject areas of research in the BSC research community have recently attracted more attention: (i) global warming and climate change mitigation, (ii) development of the third-generation biofuels produced from algal biomass, which has recently gained momentum in the CE debate, and (iii) government incentives, pricing, and subsidizing policies. The provided insights shed light on the understanding of researchers, stakeholders, and policy-makers involved in the sustainable energy sector by outlining the main research backgrounds, developments, and tendencies within the BSC arena. Looking at the provided knowledge map, potential research directions in BSCs towards implementing the CE model, including (i) integrative policy convergence at macro, meso, and micro levels, and (ii) industrializing algae-based biofuel production towards the CE transition, were proposed.
  13. Usmani Z, Sharma M, Tripathi M, Lukk T, Karpichev Y, Gathergood N, et al.
    Sci Total Environ, 2023 Jul 10;881:163002.
    PMID: 37003333 DOI: 10.1016/j.scitotenv.2023.163002
    The increasing emphasis on the development of green replacements to traditional organic solvents and ionic liquids (ILs) can be attributed to the rising concerns over human health and detrimental impacts of conventional solvents towards the environment. A new generation of solvents inspired by nature and extracted from plant bioresources has evolved over the last few years, and are referred to as natural deep eutectic solvents (NADES). NADES are mixtures of natural constituents like sugars, polyalcohols, sugar-based alcohols, amino acids and organic acids. Interest in NADES has exponentially grown over the last eight years, which is evident from an upsurge in the number of research projects undertaken. NADES are highly biocompatible as they can be biosynthesized and metabolized by nearly all living organisms. These solvents pose several noteworthy advantages, such as easy synthesis, tuneable physico-chemical properties, low toxicity, high biodegradability, solute sustainability and stabilization and low melting point. Research on the applicability of NADES in diverse areas is gaining momentum, which includes as - media for chemical and enzymatic reactions; extraction media for essential oils; anti-inflammatory and antimicrobial agent; extraction of bioactive composites; as chromatographic media; preservatives for labile compounds and in drug synthesis. This review gives a complete overview of the properties, biodegradability and toxicity of NADES which we propose can assist in further knowledge generation on their significance in biological systems and usage in green and sustainable chemistry. Information on applications of NADES in biomedical, therapeutic and pharma-biotechnology fields is also highlighted in the current article along with the recent progress and future perspectives in novel applications of NADES.
  14. Madadi M, Liu D, Qin Y, Zhang Y, Karimi K, Tabatabaei M, et al.
    Bioresour Technol, 2023 Sep;384:129370.
    PMID: 37343805 DOI: 10.1016/j.biortech.2023.129370
    This work aimed to study an integrated pretreatment technology employing p-toluenesulfonic acid (TsOH)-catalyzed liquid hot water (LHW) and short-time ball milling for the complete conversion of poplar biomass to xylooligosaccharides (XOS), glucose, and native-like lignin. The optimized TsOH-catalyzed LHW pretreatment solubilized 98.5% of hemicellulose at 160 °C for 40 min, releasing 49.8% XOS. Moreover, subsequent ball milling (20 min) maximized the enzymatic hydrolysis of cellulose from 65.8% to 96.5%, owing to the reduced particle sizes and cellulose crystallinity index. The combined pretreatment reduced the crystallinity by 70.9% while enlarging the average pore size and pore volume of the substrate by 29.5% and 52.4%, respectively. The residual lignin after enzymatic hydrolysis was rich in β-O-4 linkages (55.7/100 Ar) with less condensed structures. This lignin exhibited excellent antioxidant activity (RSI of 66.22) and ultraviolet absorbance. Thus, this research suggested a sustainable waste-free biorefinery for the holistic valorization of biomass through two-step biomass fractionation.
  15. Amiri H, Aghbashlo M, Sharma M, Gaffey J, Manning L, Moosavi Basri SM, et al.
    Nat Food, 2022 Oct;3(10):822-828.
    PMID: 37117878 DOI: 10.1038/s43016-022-00591-y
    Crustacean waste, consisting of shells and other inedible fractions, represents an underutilized source of chitin. Here, we explore developments in the field of crustacean-waste-derived chitin and chitosan extraction and utilization, evaluating emerging food systems and biotechnological applications associated with this globally abundant waste stream. We consider how improving the efficiency and selectivity of chitin separation from wastes, redesigning its chemical structure to improve biotechnology-derived chitosan, converting it into value-added chemicals, and developing new applications for chitin (such as the fabrication of advanced nanomaterials used in fully biobased electric devices) can contribute towards the United Nations Sustainable Development Goals. Finally, we consider how gaps in the research could be filled and future opportunities could be developed to make optimal use of this important waste stream for food systems and beyond.
  16. Kazemi Shariat Panahi H, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, et al.
    Biotechnol Adv, 2023 Sep;66:108172.
    PMID: 37169103 DOI: 10.1016/j.biotechadv.2023.108172
    Chitin, as the main component of the exoskeleton of Arthropoda, is a highly available natural polymer that can be processed into various value-added products. Its most important derivative, i.e., chitosan, comprising β-1,4-linked 2-amino-2-deoxy-β-d-glucose (deacetylated d-glucosamine) and N-acetyl-d-glucosamine units, can be prepared via alkaline deacetylation process. Chitosan has been used as a biodegradable, biocompatible, non-antigenic, and nontoxic polymer in some in-vitro applications, but the recently found potentials of chitosan for in-vivo applications based on its biological activities, especially antimicrobial, antioxidant, and anticancer activities, have upgraded the chitosan roles in biomaterials. Chitosan approval, generally recognized as a safe compound by the United States Food and Drug Administration, has attracted much attention toward its possible applications in diverse fields, especially biomedicine and agriculture. Despite some favorable characteristics, the chitosan's structure should be customized for advanced applications, especially due to its drawbacks, such as low drug-load capacity, low solubility, high viscosity, lack of elastic properties, and pH sensitivity. In this context, derivatization with relatively inexpensive and highly available mono- and di-saccharides to soluble branched chitosan has been considered a "game changer". This review critically scrutinizes the emerging technologies based on the synthesis and application of lactose- and galactose-modified chitosan as two important chitosan derivatives. Some characteristics of chitosan derivatives and biological activities have been detailed first to understand the value of these natural polymers. Second, the saccharide modification of chitosan has been discussed briefly. Finally, the applications of lactose- and galactose-modified chitosan have been scrutinized and compared to native chitosan to provide an insight into the current state-of-the research for stimulating new ideas with the potential of filling research gaps.
  17. Sharma DS, Wadhwa S, Gulati M, Kumar B, Chitranshi N, Gupta VK, et al.
    Int J Biol Macromol, 2023 Jan 01;224:810-830.
    PMID: 36302483 DOI: 10.1016/j.ijbiomac.2022.10.168
    Diabetic retinopathy (DR) is one of the chronic complications of diabetes. It includes retinal blood vessels' damage. If untreated, it leads to loss of vision. The existing treatment strategies for DR are expensive, invasive, and need expertise during administration. Hence, there is a need to develop a non-invasive topical formulation that can penetrate deep to the posterior segment of retina and treat the damaged retinal vessels. In addition, it should also provide sustained release. In recent years, novel drug delivery systems (NDDS) have been explored for treating DR and found successful. In this study, chitosan (CS) modified 5-Fluorouracil Nanostructured Lipid Carriers (CS-5-FU-NLCs) were prepared by modified melt emulsification-ultrasonication method and optimized by Box-Behnken Design. The size, polydispersity index, zeta potential and entrapment efficiency of CS-5-FU-NLCs were 163.2 ± 2.3 nm, 0.28 ± 1.52, 21.4 ± 0.5 mV and 85.0 ± 0.2 %, respectively. The in vitro drug release and ex vivo permeation study confirmed higher and sustained drug release in CS-5-FU-NLCs as compared to 5-FU solution. HET-CAM Model ensured the non-irritant nature of CS-5-FU-NLCs. In vivo ocular studies of CS-5-FU-NLCs confirmed antiangiogenic effect of 5-FU by CAM model and diabetic retinopathy induced rat model, indicating successful delivery of 5-FU to the retina.
  18. GBD 2019 Lip, Oral, and Pharyngeal Cancer Collaborators, Cunha ARD, Compton K, Xu R, Mishra R, Drangsholt MT, et al.
    JAMA Oncol, 2023 Oct 01;9(10):1401-1416.
    PMID: 37676656 DOI: 10.1001/jamaoncol.2023.2960
    IMPORTANCE: Lip, oral, and pharyngeal cancers are important contributors to cancer burden worldwide, and a comprehensive evaluation of their burden globally, regionally, and nationally is crucial for effective policy planning.

    OBJECTIVE: To analyze the total and risk-attributable burden of lip and oral cavity cancer (LOC) and other pharyngeal cancer (OPC) for 204 countries and territories and by Socio-demographic Index (SDI) using 2019 Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study estimates.

    EVIDENCE REVIEW: The incidence, mortality, and disability-adjusted life years (DALYs) due to LOC and OPC from 1990 to 2019 were estimated using GBD 2019 methods. The GBD 2019 comparative risk assessment framework was used to estimate the proportion of deaths and DALYs for LOC and OPC attributable to smoking, tobacco, and alcohol consumption in 2019.

    FINDINGS: In 2019, 370 000 (95% uncertainty interval [UI], 338 000-401 000) cases and 199 000 (95% UI, 181 000-217 000) deaths for LOC and 167 000 (95% UI, 153 000-180 000) cases and 114 000 (95% UI, 103 000-126 000) deaths for OPC were estimated to occur globally, contributing 5.5 million (95% UI, 5.0-6.0 million) and 3.2 million (95% UI, 2.9-3.6 million) DALYs, respectively. From 1990 to 2019, low-middle and low SDI regions consistently showed the highest age-standardized mortality rates due to LOC and OPC, while the high SDI strata exhibited age-standardized incidence rates decreasing for LOC and increasing for OPC. Globally in 2019, smoking had the greatest contribution to risk-attributable OPC deaths for both sexes (55.8% [95% UI, 49.2%-62.0%] of all OPC deaths in male individuals and 17.4% [95% UI, 13.8%-21.2%] of all OPC deaths in female individuals). Smoking and alcohol both contributed to substantial LOC deaths globally among male individuals (42.3% [95% UI, 35.2%-48.6%] and 40.2% [95% UI, 33.3%-46.8%] of all risk-attributable cancer deaths, respectively), while chewing tobacco contributed to the greatest attributable LOC deaths among female individuals (27.6% [95% UI, 21.5%-33.8%]), driven by high risk-attributable burden in South and Southeast Asia.

    CONCLUSIONS AND RELEVANCE: In this systematic analysis, disparities in LOC and OPC burden existed across the SDI spectrum, and a considerable percentage of burden was attributable to tobacco and alcohol use. These estimates can contribute to an understanding of the distribution and disparities in LOC and OPC burden globally and support cancer control planning efforts.

  19. Global Burden of Disease 2019 Cancer Collaboration, Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, et al.
    JAMA Oncol, 2022 Mar 01;8(3):420-444.
    PMID: 34967848 DOI: 10.1001/jamaoncol.2021.6987
    IMPORTANCE: The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden.

    OBJECTIVE: To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019.

    EVIDENCE REVIEW: The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs).

    FINDINGS: In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles.

    CONCLUSIONS AND RELEVANCE: The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links