Displaying all 4 publications

Abstract:
Sort:
  1. Boruah AP, Thakur KT, Gadani SP, Kothari KU, Chomba M, Guekht A, et al.
    J Neurol Sci, 2023 Dec 15;455:120858.
    PMID: 37948972 DOI: 10.1016/j.jns.2023.120858
    BACKGROUND: Pre-existing neurological diseases have been identified as risk factors for severe COVID-19 infection and death. There is a lack of comprehensive literature review assessing the relationship between pre-existing neurological conditions and COVID-19 outcomes. Identification of high risk groups is critical for optimal treatment and care.

    METHODS: A literature review was conducted for systematic reviews, meta-analyses, and scoping reviews published between January 1, 2020 and January 1, 2023. Literature assessing individuals with pre-existing neurological diseases and COVID-19 infection was included. Information regarding infection severity was extracted, and potential limitations were identified.

    RESULTS: Thirty-nine articles met inclusion criteria, with data assessing >3 million patients from 51 countries. 26/51 (50.9%) of countries analyzed were classified as high income, while the remaining represented middle-low income countries (25/51; 49.0%). A majority of evidence focused on the impact of cerebrovascular disease (17/39; 43.5%) and dementia (5/39; 12.8%) on COVID-19 severity and mortality. 92.3% of the articles (36/39) suggested a significant association between neurological conditions and increased risk of severe COVID-19 and mortality. Cerebrovascular disease, dementia, Parkinson's disease, and epilepsy were associated with increased COVID severity and mortality.

    CONCLUSION: Pre-existing neurological diseases including cerebrovascular disease, Alzheimer's disease and other dementias, epilepsy, and Parkinson's disease are significant risk factors for severity of COVID-19 infection and mortality in the acute infectious period. Given that 61.5% (24/39) of the current evidence only includes data from 2020, further updated literature is crucial to identify the relationship between chronic neurological conditions and clinical characteristics of COVID-19 variants.

  2. Frontera JA, Tamborska AA, Doheim MF, Garcia-Azorin D, Gezegen H, Guekht A, et al.
    Ann Neurol, 2022 Mar 02;91(6):756-71.
    PMID: 35233819 DOI: 10.1002/ana.26339
    OBJECTIVE: To identify the rates of neurological events following administration of mRNA (Pfizer, Moderna) or adenovirus vector (Janssen) vaccines in the U.S..

    METHODS: We utilized publicly available data from the U.S. Vaccine Adverse Event Reporting System (VAERS) collected between January 1, 2021-June 14, 2021. All free text symptoms that were reported within 42 days of vaccine administration were manually reviewed and grouped into 36 individual neurological diagnostic categories. Post-vaccination neurological event rates were compared between vaccine types and to age-matched baseline incidence rates in the U.S. and rates of neurological events following COVID.

    RESULTS: Of 306,907,697 COVID vaccine doses administered during the study timeframe, 314,610 (0.1%) people reported any adverse event and 105,214 (0.03%) reported neurological adverse events in a median of 1 day (IQR0-3) from inoculation. Guillain-Barre Syndrome (GBS), and cerebral venous thrombosis (CVT) occurred in fewer than 1 per 1,000,000 doses. Significantly more neurological adverse events were reported following Janssen (Ad26.COV2.S) vaccination compared to either Pfizer-BioNtech (BNT162b2) or Moderna (mRNA-1273; 0.15% versus 0.03% versus 0.03% of doses, respectively,P<0.0001). The observed-to-expected ratios for GBS, CVT and seizure following Janssen vaccination were ≥1.5-fold higher than background rates. However, the rate of neurological events after acute SARS-CoV-2 infection was up to 617-fold higher than after COVID vaccination.

    INTERPRETATION: Reports of serious neurological events following COVID vaccination are rare. GBS, CVT and seizure may occur at higher than background rates following Janssen vaccination. Despite this, rates of neurological complications following acute SARS-CoV-2 infection are up to 617-fold higher than after COVID vaccination. This article is protected by copyright. All rights reserved.

  3. Misra S, Kolappa K, Prasad M, Radhakrishnan D, Thakur KT, Solomon T, et al.
    Neurology, 2021 Dec 07;97(23):e2269-e2281.
    PMID: 34635561 DOI: 10.1212/WNL.0000000000012930
    BACKGROUND AND OBJECTIVES: One year after the onset of the coronavirus disease 2019 (COVID-19) pandemic, we aimed to summarize the frequency of neurologic manifestations reported in patients with COVID-19 and to investigate the association of these manifestations with disease severity and mortality.

    METHODS: We searched PubMed, Medline, Cochrane library, ClinicalTrials.gov, and EMBASE for studies from December 31, 2019, to December 15, 2020, enrolling consecutive patients with COVID-19 presenting with neurologic manifestations. Risk of bias was examined with the Joanna Briggs Institute scale. A random-effects meta-analysis was performed, and pooled prevalence and 95% confidence intervals (CIs) were calculated for neurologic manifestations. Odds ratio (ORs) and 95% CIs were calculated to determine the association of neurologic manifestations with disease severity and mortality. Presence of heterogeneity was assessed with I 2, meta-regression, and subgroup analyses. Statistical analyses were conducted in R version 3.6.2.

    RESULTS: Of 2,455 citations, 350 studies were included in this review, providing data on 145,721 patients with COVID-19, 89% of whom were hospitalized. Forty-one neurologic manifestations (24 symptoms and 17 diagnoses) were identified. Pooled prevalence of the most common neurologic symptoms included fatigue (32%), myalgia (20%), taste impairment (21%), smell impairment (19%), and headache (13%). A low risk of bias was observed in 85% of studies; studies with higher risk of bias yielded higher prevalence estimates. Stroke was the most common neurologic diagnosis (pooled prevalence 2%). In patients with COVID-19 ≥60 years of age, the pooled prevalence of acute confusion/delirium was 34%, and the presence of any neurologic manifestations in this age group was associated with mortality (OR 1.80, 95% CI 1.11-2.91).

    DISCUSSION: Up to one-third of patients with COVID-19 analyzed in this review experienced at least 1 neurologic manifestation. One in 50 patients experienced stroke. In those >60 years of age, more than one-third had acute confusion/delirium; the presence of neurologic manifestations in this group was associated with nearly a doubling of mortality. Results must be interpreted with the limitations of observational studies and associated bias in mind.

    SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020181867.

  4. Giussani G, Westenberg E, Garcia-Azorin D, Bianchi E, Yusof Khan AHK, Allegri RF, et al.
    Neuroepidemiology, 2024;58(2):120-133.
    PMID: 38272015 DOI: 10.1159/000536352
    INTRODUCTION: The aim of this systematic review and meta-analysis was to evaluate the prevalence of thirteen neurological manifestations in people affected by COVID-19 during the acute phase and at 3, 6, 9 and 12-month follow-up time points.

    METHODS: The study protocol was registered with PROSPERO (CRD42022325505). MEDLINE (PubMed), Embase, and the Cochrane Library were used as information sources. Eligible studies included original articles of cohort studies, case-control studies, cross-sectional studies, and case series with ≥5 subjects that reported the prevalence and type of neurological manifestations, with a minimum follow-up of 3 months after the acute phase of COVID-19 disease. Two independent reviewers screened studies from January 1, 2020, to June 16, 2022. The following manifestations were assessed: neuromuscular disorders, encephalopathy/altered mental status/delirium, movement disorders, dysautonomia, cerebrovascular disorders, cognitive impairment/dementia, sleep disorders, seizures, syncope/transient loss of consciousness, fatigue, gait disturbances, anosmia/hyposmia, and headache. The pooled prevalence and their 95% confidence intervals were calculated at the six pre-specified times.

    RESULTS: 126 of 6,565 screened studies fulfilled the eligibility criteria, accounting for 1,542,300 subjects with COVID-19 disease. Of these, four studies only reported data on neurological conditions other than the 13 selected. The neurological disorders with the highest pooled prevalence estimates (per 100 subjects) during the acute phase of COVID-19 were anosmia/hyposmia, fatigue, headache, encephalopathy, cognitive impairment, and cerebrovascular disease. At 3-month follow-up, the pooled prevalence of fatigue, cognitive impairment, and sleep disorders was still 20% and higher. At six- and 9-month follow-up, there was a tendency for fatigue, cognitive impairment, sleep disorders, anosmia/hyposmia, and headache to further increase in prevalence. At 12-month follow-up, prevalence estimates decreased but remained high for some disorders, such as fatigue and anosmia/hyposmia. Other neurological disorders had a more fluctuating occurrence.

    DISCUSSION: Neurological manifestations were prevalent during the acute phase of COVID-19 and over the 1-year follow-up period, with the highest overall prevalence estimates for fatigue, cognitive impairment, sleep disorders, anosmia/hyposmia, and headache. There was a downward trend over time, suggesting that neurological manifestations in the early post-COVID-19 phase may be long-lasting but not permanent. However, especially for the 12-month follow-up time point, more robust data are needed to confirm this trend.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links