Displaying all 3 publications

Abstract:
Sort:
  1. Dasan YK, Guan BH, Zahari MH, Chuan LK
    PLoS One, 2017;12(1):e0170075.
    PMID: 28081257 DOI: 10.1371/journal.pone.0170075
    Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21-25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles.
  2. Ayub S, Guan BH, Ahmad F, Oluwatobi YA, Nisa ZU, Javed MF, et al.
    Polymers (Basel), 2021 Aug 03;13(15).
    PMID: 34372183 DOI: 10.3390/polym13152580
    With advancements in the automated industry, electromagnetic inferences (EMI) have been increasing over time, causing major distress among the end-users and affecting electronic appliances. The issue is not new and major work has been done, but unfortunately, the issue has not been fully eliminated. Therefore, this review intends to evaluate the previous carried-out studies on electromagnetic shielding materials with the combination of Graphene@Iron, Graphene@Polymer, Iron@Polymer and Graphene@Iron@Polymer composites in X-band frequency range and above to deal with EMI. VOSviewer was also used to perform the keyword analysis which shows how the studies are interconnected. Based on the carried-out review it was observed that the most preferable materials to deal with EMI are polymer-based composites which showed remarkable results. It is because the polymers are flexible and provide better bonding with other materials. Polydimethylsiloxane (PDMS), polyaniline (PANI), polymethyl methacrylate (PMMA) and polyvinylidene fluoride (PVDF) are effective in the X-band frequency range, and PDMS, epoxy, PVDF and PANI provide good shielding effectiveness above the X-band frequency range. However, still, many new combinations need to be examined as mostly the shielding effectiveness was achieved within the X-band frequency range where much work is required in the higher frequency range.
  3. Ayub S, Guan BH, Ahmad F, Soleimani H, You KY, Nisa ZU, et al.
    Heliyon, 2024 Nov 15;10(21):e39828.
    PMID: 39524851 DOI: 10.1016/j.heliyon.2024.e39828
    Electromagnetic pollution, or electromagnetic interference (EMI), is a phenomenon that has arisen due to the fast spread of electronic gadgets. To overcome EMI problem, polymer-based composites have sparked considerable attention among researchers owing to their superior qualities. Hence, this work utilizes magnetite-modified graphene (MMG) filler with polyvinylidene fluoride (PVDF) polymer to form polymer composites in various proportions ranging from 2 to 10 wt% to study the EM properties in the X-band. It was observed that the sample composite having a MMG filler content of 10 wt% possesses a relatively higher electrical conductivity of 0.65 S/cm as compared to the other prepared composites in this research work. The same sample composite also attained a total shielding efficacy of 53.04 dB at a thickness of 3 mm. Moreover, it was observed that the filler has improved the material's thermal stability and microwave absorption capacity, making it a high-efficiency EMI shielding material appropriate for usage in the electronic and aviation industries.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links