Methods: We conducted a serial, cross-sectional study of National Center for Health Statistics Natality Data representing all live births in the US from 2011 to 2019. We assigned 1 point for each of four ideal prepregnancy metrics (nonsmoking and ideal body mass index [18.5-24.9 kg/m2] provided by maternal self-report, and absence of hypertension and diabetes ascertained by the healthcare professional at delivery) to construct a prepregnancy clinical CVH score ranging from 0 to 4. We described the distribution of prepregnancy CVH, overall and stratified by self-reported race/ethnicity, age, insurance status, and receipt of the Women, Infants, and Children program (WIC) for supplemental nutrition. We examined trends by calculating average annual percent changes (AAPCs) in optimal prepregnancy CVH (score of 4).
Results: Of 31,643,982 live births analyzed between 2011 and 2019, 53.6% were to non-Hispanic White, 14.5% non-Hispanic Black, 23.3% Hispanic, and 6.6% non-Hispanic Asian women. The mean age (SD) was 28.5 (5.8) years. The prevalence (per 100 live births) of optimal prepregnancy CVH score of 4 declined from 42.1 to 37.7 from 2011 to 2019, with an AAPC (95% CI) of -1.4% per year (-1.3,-1.5). While the relative decline was observed across all race/ethnicity, insurance, and WIC subgroups, significant disparities persisted by race, insurance status, and receipt of WIC. In 2019, non-Hispanic Black women (28.7 per 100 live births), those on Medicaid (30.4), and those receiving WIC (29.1) had the lowest prevalence of optimal CVH.
Conclusions: Overall, less than half of pregnant women had optimal prepregnancy CVH, and optimal prepregnancy CVH declined in each race/ethnicity, age, insurance, and WIC subgroup between 2011-2019 in the US. However, there were persistent disparities by race/ethnicity and socioeconomic status.
OBJECTIVES: The purpose of this study was to describe trends in maternal pre-pregnancy hypertension among women in rural and urban areas in 2007 to 2018 in order to inform community-engaged prevention and policy strategies.
METHODS: We performed a nationwide, serial cross-sectional study using maternal data from all live births in women age 15 to 44 years between 2007 and 2018 (CDC Natality Database). Rates of pre-pregnancy hypertension were calculated per 1,000 live births overall and by urbanization status. Subgroup analysis in standard 5-year age categories was performed. We quantified average annual percentage change using Joinpoint Regression and rate ratios (95% confidence intervals [CIs]) to compare yearly rates between rural and urban areas.
RESULTS: Among 47,949,381 live births to women between 2007 and 2018, rates of pre-pregnancy hypertension per 1,000 live births increased among both rural (13.7 to 23.7) and urban women (10.5 to 20.0). Two significant inflection points were identified in 2010 and 2016, with highest annual percentage changes between 2016 and 2018 in rural and urban areas. Although absolute rates were lower in younger compared with older women in both rural and urban areas, all age groups experienced similar increases. The rate ratios of pre-pregnancy hypertension in rural compared with urban women ranged from 1.18 (95% CI: 1.04 to 1.35) for ages 15 to 19 years to 1.51 (95% CI: 1.39 to 1.64) for ages 40 to 44 years in 2018.
CONCLUSIONS: Maternal burden of pre-pregnancy hypertension has nearly doubled in the past decade and the rural-urban gap has persisted.
OBJECTIVE: To determine if there is an association between maternal nativity and preterm birth rates among nulliparous individuals, and whether that association differs by self-reported race and ethnicity of the pregnant individual.
DESIGN, SETTING, AND PARTICIPANTS: This was a nationwide, cross-sectional study conducted using National Center for Health Statistics birth registration records for 8 590 988 nulliparous individuals aged 15 to 44 years with singleton live births in the US from 2014 to 2019. Data were analyzed from March to May 2022.
EXPOSURES: Maternal nativity (non-US-born compared with US-born individuals as the reference, wherein US-born was defined as born within 1 of the 50 US states or Washington, DC) in the overall sample and stratified by self-reported ethnicity and race, including non-Hispanic Asian and disaggregated Asian subgroups (Asian Indian, Chinese, Filipino, Japanese, Korean, Pacific Islander, Vietnamese, and other Asian), non-Hispanic Black, Hispanic and disaggregated Hispanic subgroups (Cuban, Mexican, Puerto Rican, and other Hispanic), and non-Hispanic White.
MAIN OUTCOMES AND MEASURES: The primary outcome was preterm birth (<37 weeks of gestation) and the secondary outcome was very preterm birth (<32 weeks of gestation).
RESULTS: Of 8 590 988 pregnant individuals included (mean [SD] age at delivery, 28.3 [5.8] years in non-US-born individuals and 26.2 [5.7] years in US-born individuals; 159 497 [2.3%] US-born and 552 938 [31.2%] non-US-born individuals self-identified as Asian or Pacific Islander, 1 050 367 [15.4%] US-born and 178 898 [10.1%] non-US-born individuals were non-Hispanic Black, 1 100 337 [16.1%] US-born and 711 699 [40.2%] non-US-born individuals were of Hispanic origin, and 4 512 294 [66.1%] US-born and 328 205 [18.5%] non-US-born individuals were non-Hispanic White), age-standardized rates of preterm birth were lower among non-US-born individuals compared with US-born individuals (10.2%; 95% CI, 10.2-10.3 vs 10.9%; 95% CI, 10.9-11.0) with an adjusted odds ratio (aOR) of 0.90 (95% CI, 0.89-0.90). The greatest relative difference was observed among Japanese individuals (aOR, 0.69; 95% CI, 0.60-0.79) and non-Hispanic Black individuals (aOR, 0.74; 0.73-0.76) individuals. Non-US-born Pacific Islander individuals experienced higher preterm birth rates compared with US-born Pacific Islander individuals (aOR, 1.15; 95% CI, 1.04-1.27). Puerto Rican individuals born in Puerto Rico compared with those born in US states or Washington, DC, also had higher preterm birth rates (aOR, 1.07; 95% CI, 1.03-1.12).
CONCLUSIONS AND RELEVANCE: Overall preterm birth rates were lower among non-US-born individuals compared with US-born individuals. However, there was substantial heterogeneity in preterm birth rates across maternal racial and ethnic groups, particularly among disaggregated Asian and Hispanic subgroups.
Objective: To examine associations between maternal gestational CVH and offspring CVH.
Design, Setting, and Participants: This cohort study used data from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study (examinations: July 2000-April 2006) and HAPO Follow-Up Study (examinations: February 2013-December 2016). The analyses included 2302 mother-child dyads, comprising 48% of HAPO Follow-Up Study participants, in an ancillary CVH study. Participants were from 9 field centers across the United States, Barbados, United Kingdom, China, Thailand, and Canada.
Exposures: Maternal gestational CVH at a target of 28 weeks' gestation, based on 5 metrics: body mass index, blood pressure, total cholesterol level, glucose level, and smoking. Each metric was categorized as ideal, intermediate, or poor using pregnancy guidelines. Total CVH was categorized as follows: all ideal metrics, 1 or more intermediate (but 0 poor) metrics, 1 poor metric, or 2 or more poor metrics.
Main Outcomes and Measures: Offspring CVH at ages 10 to 14 years, based on 4 metrics: body mass index, blood pressure, total cholesterol level, and glucose level. Total CVH was categorized as for mothers.
Results: Among 2302 dyads, the mean (SD) ages were 29.6 (2.7) years for pregnant mothers and 11.3 (1.1) years for children. During pregnancy, the mean (SD) maternal CVH score was 8.6 (1.4) out of 10. Among pregnant mothers, the prevalence of all ideal metrics was 32.8% (95% CI, 30.6%-35.1%), 31.7% (95% CI, 29.4%-34.0%) for 1 or more intermediate metrics, 29.5% (95% CI, 27.2%-31.7%) for 1 poor metric, and 6.0% (95% CI, 3.8%-8.3%) for 2 or more poor metrics. Among children of mothers with all ideal metrics, the prevalence of all ideal metrics was 42.2% (95% CI, 38.4%-46.2%), 36.7% (95% CI, 32.9%-40.7%) for 1 or more intermediate metrics, 18.4% (95% CI, 14.6%-22.4%) for 1 poor metric, and 2.6% (95% CI, 0%-6.6%) for 2 or more poor metrics. Among children of mothers with 2 or more poor metrics, the prevalence of all ideal metrics was 30.7% (95% CI, 22.0%-40.4%), 28.3% (95% CI, 19.7%-38.1%) for 1 or more intermediate metrics, 30.7% (95% CI, 22.0%-40.4%) for 1 poor metric, and 10.2% (95% CI, 1.6%-20.0%) for 2 or more poor metrics. The adjusted relative risks associated with 1 or more intermediate, 1 poor, and 2 or more poor (vs all ideal) metrics, respectively, in mothers during pregnancy were 1.17 (95% CI, 0.96-1.42), 1.66 (95% CI, 1.39-1.99), and 2.02 (95% CI, 1.55-2.64) for offspring to have 1 poor (vs all ideal) metrics, and the relative risks were 2.15 (95% CI, 1.23-3.75), 3.32 (95% CI,1.96-5.62), and 7.82 (95% CI, 4.12-14.85) for offspring to have 2 or more poor (vs all ideal) metrics. Additional adjustment for categorical birth factors (eg, preeclampsia) did not fully explain these significant associations (eg, relative risk for association between 2 or more poor metrics among mothers during pregnancy and 2 or more poor metrics among offspring after adjustment for an extended set of birth factors, 6.23 [95% CI, 3.03-12.82]).
Conclusions and Relevance: In this multinational cohort, better maternal CVH at 28 weeks' gestation was significantly associated with better offspring CVH at ages 10 to 14 years.
Objective: To determine whether rates of gestational diabetes among individuals at first live birth changed from 2011 to 2019 and how these rates differ by race and ethnicity in the US.
Design, Setting, and Participants: Serial cross-sectional analysis using National Center for Health Statistics data for 12 610 235 individuals aged 15 to 44 years with singleton first live births from 2011 to 2019 in the US.
Exposures: Gestational diabetes data stratified by the following race and ethnicity groups: Hispanic/Latina (including Central and South American, Cuban, Mexican, and Puerto Rican); non-Hispanic Asian/Pacific Islander (including Asian Indian, Chinese, Filipina, Japanese, Korean, and Vietnamese); non-Hispanic Black; and non-Hispanic White.
Main Outcomes and Measures: The primary outcomes were age-standardized rates of gestational diabetes (per 1000 live births) and respective mean annual percent change and rate ratios (RRs) of gestational diabetes in non-Hispanic Asian/Pacific Islander (overall and in subgroups), non-Hispanic Black, and Hispanic/Latina (overall and in subgroups) individuals relative to non-Hispanic White individuals (referent group).
Results: Among the 12 610 235 included individuals (mean [SD] age, 26.3 [5.8] years), the overall age-standardized gestational diabetes rate significantly increased from 47.6 (95% CI, 47.1-48.0) to 63.5 (95% CI, 63.1-64.0) per 1000 live births from 2011 to 2019, a mean annual percent change of 3.7% (95% CI, 2.8%-4.6%) per year. Of the 12 610 235 participants, 21% were Hispanic/Latina (2019 gestational diabetes rate, 66.6 [95% CI, 65.6-67.7]; RR, 1.15 [95% CI, 1.13-1.18]), 8% were non-Hispanic Asian/Pacific Islander (2019 gestational diabetes rate, 102.7 [95% CI, 100.7-104.7]; RR, 1.78 [95% CI, 1.74-1.82]), 14% were non-Hispanic Black (2019 gestational diabetes rate, 55.7 [95% CI, 54.5-57.0]; RR, 0.97 [95% CI, 0.94-0.99]), and 56% were non-Hispanic White (2019 gestational diabetes rate, 57.7 [95% CI, 57.2-58.3]; referent group). Gestational diabetes rates were highest in Asian Indian participants (2019 gestational diabetes rate, 129.1 [95% CI, 100.7-104.7]; RR, 2.24 [95% CI, 2.15-2.33]). Among Hispanic/Latina participants, gestational diabetes rates were highest among Puerto Rican individuals (2019 gestational diabetes rate, 75.8 [95% CI, 71.8-79.9]; RR, 1.31 [95% CI, 1.24-1.39]). Gestational diabetes rates increased among all race and ethnicity subgroups and across all age groups.
Conclusions and Relevance: Among individuals with a singleton first live birth in the US from 2011 to 2019, rates of gestational diabetes increased across all racial and ethnic subgroups. Differences in absolute gestational diabetes rates were observed across race and ethnicity subgroups.
OBJECTIVE: The purpose of this study was to examine the association of gestational cardiovascular health-formally characterized by a combination of 5 metrics-with adverse maternal and newborn outcomes.
STUDY DESIGN: We analyzed data from the Hyperglycemia and Adverse Pregnancy Outcome study, including 2304 mother-newborn dyads from 6 countries. Maternal cardiovascular health was defined by the combination of the following 5 metrics measured at a mean of 28 (24-32) weeks' gestation: body mass index, blood pressure, lipids, glucose, and smoking. Levels of each metric were categorized using pregnancy guidelines, and the total cardiovascular health was scored (0-10 points, where 10 was the most favorable). Cord blood was collected at delivery, newborn anthropometrics were measured within 72 hours, and medical records were abstracted for obstetrical outcomes. Modified Poisson and multinomial logistic regression were used to test the associations of gestational cardiovascular health with pregnancy outcomes, adjusted for center and maternal and newborn characteristics.
RESULTS: The average age of women at study exam was 29.6 years old, and they delivered at a mean gestational age of 39.8 weeks. The mean total gestational cardiovascular health score was 8.6 (of 10); 36.3% had all ideal metrics and 7.5% had 2+ poor metrics. In fully adjusted models, each 1 point higher (more favorable) cardiovascular health score was associated with lower risks for preeclampsia (relative risk, 0.67 [95% confidence interval, 0.61-0.73]), unplanned primary cesarean delivery (0.88 [0.82-0.95]), newborn birthweight >90th percentile (0.81 [0.75-0.87]), sum of skinfolds >90th percentile (0.84 [0.77-0.92]), and insulin sensitivity <10th percentile (0.83 [0.77-0.90]). Cardiovascular health categories demonstrated graded associations with outcomes; for example, relative risks (95% confidence intervals) for preeclampsia were 3.13 (1.39-7.06), 5.34 (2.44-11.70), and 9.30 (3.95-21.86) for women with ≥1 intermediate, 1 poor, or ≥2 poor (vs all ideal) metrics, respectively.
CONCLUSION: More favorable cardiovascular health at 24 to 32 weeks' gestation was associated with lower risks for several adverse pregnancy outcomes in a multinational cohort.
OBJECTIVE: To examine associations of HDP or GDM with offspring CVH in early adolescence.
STUDY DESIGN: This analysis used data from the prospective Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study from 2000 to 2006 and the HAPO Follow-Up Study from 2013 to 2016. This analysis included 3,317 mother-child dyads from 10 field centers, comprising 70.8% of HAPO Follow-Up Study participants. Those with pregestational diabetes and chronic hypertension were excluded. The exposures were having any HDP or GDM compared with not having HDP or GDM, respectively (reference). The outcome was offspring CVH at ages 10 to 14 years, based on four metrics: body mass index, blood pressure, total cholesterol level, and glucose level. Each metric was categorized as ideal, intermediate, or poor using a framework provided by the American Heart Association. The outcome was primarily defined as having at least one CVH metric that was non-ideal versus all ideal (reference), and secondarily as the number of non-ideal CVH metrics: at least one intermediate metric, one poor metric, or at least two poor metrics versus all ideal (reference). Modified Poisson regression with robust error variance was used and adjusted for covariates at pregnancy enrollment, including field center, parity, age, gestational age, alcohol or tobacco use, child's assigned sex at birth, and child's age at follow-up.
RESULTS: Among 3,317 maternal-child dyads, the median (IQR) ages were 30.4 (25.6, 33.9) years for pregnant individuals and 11.6 (10.9, 12.3) years for children. During pregnancy, 10.4% of individuals developed HDP and 14.6% developed GDM. At follow-up, 55.5% of offspring had at least one non-ideal CVH metric. In adjusted models, having HDP (aRR 1.14; 95% CI 1.04, 1.25) or having GDM (aRR 1.10; 95% CI 1.02, 1.19) was associated with greater risk that offspring developed less-than-ideal CVH at ages 10 to 14 years. The above associations strengthened in magnitude as the severity of adverse CVH metrics increased (i.e., with the outcome measured as >1 intermediate, 1 poor, and >2 poor adverse metrics), albeit the only statistically significant association was with the "1-poor-metric" exposure.
CONCLUSONS: In this multi-national prospective cohort, pregnant individuals who experienced either HDP and GDM were at significantly increased risk of having offspring with worse CVH in early adolescence. Reducing adverse pregnancy outcomes and increasing surveillance with targeted interventions after an adverse pregnancy outcome should be studied as potential avenues to enhance long-term cardiovascular health in the offspring exposed in utero.