We here describe the novel finding that brain endothelial cells in vitro can stimulate the growth of Plasmodium falciparum through the production of low molecular weight growth factors. By using a conditioned medium approach, we show that the brain endothelial cells continued to release these factors over time. If this mirrors the in vivo situation, these growth factors potentially would provide an advantage, in terms of enhanced growth, for sequestered parasitised red blood cells in the brain microvasculature. We observed this phenomenon with brain endothelial cells from several sources as well as a second P. falciparum strain. The characteristics of the growth factors included: <3 kDa molecular weight, heat stable, and in part chloroform soluble. Future efforts should be directed at identifying these growth factors, since blocking their production or actions might be of benefit for reducing parasite load and, hence, malaria pathology.
The pathogenesis of fatal cerebral malaria (CM) is not well understood, in part because data from patients in whom a clinical diagnosis was established prior to death are rare. In a murine CM model, platelets accumulate in brain microvasculature, and antiplatelet therapy can improve outcome. We determined whether platelets are also found in cerebral vessels in human CM, and we performed immunohistopathology for platelet-specific glycoprotein, GPIIb-IIIa, on tissue from multiple brain sites in Malawian children whose fatal illness was severe malarial anemia, CM, or nonmalarial encephalopathy. Platelets were observed in 3 locations within microvessels: between malaria pigment and leukocytes, associated with malaria pigment, or alone. The mean surface area of platelet staining and the proportion of vessels showing platelet accumulation were significantly higher in patients with CM than in those without it. Platelet accumulation occurs in the microvasculature of patients with CM and may play a role in the pathogenesis of the disease.