Coronavirus disease 2019 (COVID-19) is a disease caused by a novel strain of coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severely affecting the lungs. Our study aims to combine both quantitative and qualitative analysis of the convolutional neural network (CNN) model to diagnose COVID-19 on chest X-ray (CXR) images. We investigated 18 state-of-the-art CNN models with transfer learning, which include AlexNet, DarkNet-19, DarkNet-53, DenseNet-201, GoogLeNet, Inception-ResNet-v2, Inception-v3, MobileNet-v2, NasNet-Large, NasNet-Mobile, ResNet-18, ResNet-50, ResNet-101, ShuffleNet, SqueezeNet, VGG-16, VGG-19, and Xception. Their performances were evaluated quantitatively using six assessment metrics: specificity, sensitivity, precision, negative predictive value (NPV), accuracy, and F1-score. The top four models with accuracy higher than 90% are VGG-16, ResNet-101, VGG-19, and SqueezeNet. The accuracy of these top four models is between 90.7% and 94.3%; the F1-score is between 90.8% and 94.3%. The VGG-16 scored the highest accuracy of 94.3% and F1-score of 94.3%. The majority voting with all the 18 CNN models and top 4 models produced an accuracy of 93.0% and 94.0%, respectively. The top four and bottom three models were chosen for the qualitative analysis. A gradient-weighted class activation mapping (Grad-CAM) was used to visualize the significant region of activation for the decision-making of image classification. Two certified radiologists performed blinded subjective voting on the Grad-CAM images in comparison with their diagnosis. The qualitative analysis showed that SqueezeNet is the closest model to the diagnosis of two certified radiologists. It demonstrated a competitively good accuracy of 90.7% and F1-score of 90.8% with 111 times fewer parameters and 7.7 times faster than VGG-16. Therefore, this study recommends both VGG-16 and SqueezeNet as additional tools for the diagnosis of COVID-19.
Neuromyelitis optica spectrum disorder (NMOSD), also known as Devic disease, is an autoimmune central nervous system disorder in humans that commonly causes inflammatory demyelination in the optic nerves and spinal cord. Inflammation in the optic nerves is termed optic neuritis (ON). ON is a common clinical presentation; however, it is not necessarily present in all NMOSD patients. ON in NMOSD can be relapsing and result in severe vision loss. To the best of our knowledge, no study utilises deep learning to classify ON changes on MRI among patients with NMOSD. Therefore, this study aims to deploy eight state-of-the-art CNN models (Inception-v3, Inception-ResNet-v2, ResNet-101, Xception, ShuffleNet, DenseNet-201, MobileNet-v2, and EfficientNet-B0) with transfer learning to classify NMOSD patients with and without chronic ON using optic nerve magnetic resonance imaging. This study also investigated the effects of data augmentation before and after dataset splitting on cropped and whole images. Both quantitative and qualitative assessments (with Grad-Cam) were used to evaluate the performances of the CNN models. The Inception-v3 was identified as the best CNN model for classifying ON among NMOSD patients, with accuracy of 99.5%, sensitivity of 98.9%, specificity of 93.0%, precision of 100%, NPV of 99.0%, and F1-score of 99.4%. This study also demonstrated that the application of augmentation after dataset splitting could avoid information leaking into the testing datasets, hence producing more realistic and reliable results.