Displaying all 4 publications

Abstract:
Sort:
  1. Chan WY, Hamid MTR, Gowdh NFM, Rahmat K, Yaakup NA, Chai CS
    Curr Med Imaging, 2021;17(6):677-685.
    PMID: 33390122 DOI: 10.2174/1573405616666201231103312
    BACKGROUND: Coronavirus disease 2019 (COVID-19) is highly contagious and has claimed more than one million lives, besides causing hardship and disruptions. The Fleischner Society has recommended chest X-ray (CXR) in detecting cases at high risk of disease progression, for triaging suspected patients with moderate-to-severe illness, and for eliminating false negatives in areas with high pre-test probability or limited resources. Although CXR is less sensitive than real-- time reverse transcription-polymerase chain reaction (RT-PCR) in detecting mild COVID-19, it is nevertheless useful because of equipment portability, low cost and practicality in serial assessments of disease progression among hospitalized patients.

    OBJECTIVE: This study aims to review the typical and relatively atypical CXR manifestations of COVID-19 pneumonia in a tertiary care hospital.

    METHODS: The CXRs of 136 COVID-19 patients confirmed through real-time RT-PCR from March to May 2020 were reviewed. A literature search was performed using PubMed.

    RESULTS: A total of 54 patients had abnormal CXR whilst the others were normal. Typical CXR findings included pulmonary consolidation or ground-glass opacities in a multifocal, bilateral peripheral, or lower zone distribution, whereas atypical CXR features comprised cavitation and pleural effusion.

    CONCLUSION: Typical findings of COVID-19 infection in chest computed tomography studies can also be seen in CXR. The presence of atypical features associated with worse disease outcome. Recognition of these features on CXR will improve the accuracy and speed of diagnosing COVID-19 patients.

  2. Yap LPP, Sani FM, Chung E, Gowdh NFM, Ng WL, Wong JHD
    Singapore Med J, 2024 Feb 02.
    PMID: 38305361 DOI: 10.4103/singaporemedj.SMJ-2021-461
    INTRODUCTION: Multiphase computed tomography (CT) using fixed volume contrast media may lead to high radiation exposure and toxicity in patients with low body weight. We evaluated a customised weight-based protocol for multiphase CT in terms of radiation exposure, image quality and cost savings.

    METHODS: A total of 224 patients were recruited. An optimised CT protocol was applied using 100 kV and 1 mL/kg of contrast media dosing. The image quality and radiation dose exposure of this CT protocol were compared to those of a standard 120 kV, 80 mL fixed volume protocol. The radiation dose information and CT Hounsfield units were recorded. The signal-to-noise ratio, contrast-to-noise ratio (CNR) and figure of merit (FOM) were used as comparison metrics. The images were assessed for contrast opacification and visual quality by two radiologists. The renal function, contrast media volume and cost were also evaluated.

    RESULTS: The median effective dose was lowered by 16% in the optimised protocol, while the arterial phase images achieved significantly higher CNR and FOM. The radiologists' evaluation showed more than 97% absolute agreement with no significant differences in image quality. No significant differences were found in the pre- and post-CT estimated glomerular filtration rate. However, contrast media usage was significantly reduced by 1,680 mL, with an overall cost savings of USD 421 in the optimised protocol.

    CONCLUSION: The optimised weight-based protocol is cost-efficient and lowers radiation dose while maintaining overall contrast enhancement and image quality.

  3. Jalunis MM, Hng SY, Eg KP, Gowdh NFM, Sanmugam A, Nah SA, et al.
    Indian J Pediatr, 2024 Jun;91(6):632.
    PMID: 38224429 DOI: 10.1007/s12098-024-05021-4
  4. Ninomiya K, Arimura H, Tanaka K, Chan WY, Kabata Y, Mizuno S, et al.
    Comput Methods Programs Biomed, 2023 Jun;236:107544.
    PMID: 37148668 DOI: 10.1016/j.cmpb.2023.107544
    OBJECTIVES: To elucidate a novel radiogenomics approach using three-dimensional (3D) topologically invariant Betti numbers (BNs) for topological characterization of epidermal growth factor receptor (EGFR) Del19 and L858R mutation subtypes.

    METHODS: In total, 154 patients (wild-type EGFR, 72 patients; Del19 mutation, 45 patients; and L858R mutation, 37 patients) were retrospectively enrolled and randomly divided into 92 training and 62 test cases. Two support vector machine (SVM) models to distinguish between wild-type and mutant EGFR (mutation [M] classification) as well as between the Del19 and L858R subtypes (subtype [S] classification) were trained using 3DBN features. These features were computed from 3DBN maps by using histogram and texture analyses. The 3DBN maps were generated using computed tomography (CT) images based on the Čech complex constructed on sets of points in the images. These points were defined by coordinates of voxels with CT values higher than several threshold values. The M classification model was built using image features and demographic parameters of sex and smoking status. The SVM models were evaluated by determining their classification accuracies. The feasibility of the 3DBN model was compared with those of conventional radiomic models based on pseudo-3D BN (p3DBN), two-dimensional BN (2DBN), and CT and wavelet-decomposition (WD) images. The validation of the model was repeated with 100 times random sampling.

    RESULTS: The mean test accuracies for M classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.810, 0.733, 0.838, 0.782, and 0.799, respectively. The mean test accuracies for S classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.773, 0.694, 0.657, 0.581, and 0.696, respectively.

    CONCLUSION: 3DBN features, which showed a radiogenomic association with the characteristics of the EGFR Del19/L858R mutation subtypes, yielded higher accuracy for subtype classifications in comparison with conventional features.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links