Anthocyanins are colored polyphenolic compounds that belong to the flavonoids family and are largely present in many vegetables and fruits. They have been used in traditional medicine in many cultures for a long time. The most common and abundant anthocyanins are those presenting an O-glycosylation at C-3 (C ring) of the flavonoid skeleton to form -O-β-glucoside derivatives. The present comprehensive review summarized recent data on the anticancer properties of cyanidings along with natural sources, phytochemical data, traditional medical applications, molecular mechanisms and recent nanostrategies to increase the bioavailability and anticancer effects of cyanidins. For this analysis, in vitro, in vivo and clinical studies published up to the year 2022 were sourced from scientific databases and search engines such as PubMed/Medline, Google scholar, Web of Science, Scopus, Wiley and TRIP database. Cyanidins' antitumor properties are exerted during different stages of carcinogenesis and are based on a wide variety of biological activities. The data gathered and discussed in this review allows for affirming that cyanidins have relevant anticancer activity in vitro, in vivo and clinical studies. Future research should focus on studies that bring new data on improving the bioavailability of anthocyanins and on conducting detailed translational pharmacological studies to accurately establish the effective anticancer dose in humans as well as the correct route of administration.
Artemisinin (ART) is a bioactive compound isolated from the plant Artemisia annua and has been traditionally used to treat conditions such as malaria, cancer, viral infections, bacterial infections, and some cardiovascular diseases, especially in Asia, North America, Europe and other parts of the world. This comprehensive review aims to update the biomedical potential of ART and its derivatives for treating human diseases highlighting its pharmacokinetic and pharmacological properties based on the results of experimental pharmacological studies in vitro and in vivo. Cellular and molecular mechanisms of action, tested doses and toxic effects of artemisinin were also described. The analysis of data based on an up-to-date literature search showed that ART and its derivatives display anticancer effects along with a wide range of pharmacological activities such as antibacterial, antiviral, antimalarial, antioxidant and cardioprotective effects. These compounds have great potential for discovering new drugs used as adjunctive therapies in cancer and various other diseases. Detailed translational and experimental studies are however needed to fully understand the pharmacological effects of these compounds.