The most common permittivity function models are compared and identifying the best model for further studies is desired. For this study, simulations using several different models and an analytical analysis on a practical surface Plasmon structure were done with an accuracy of ∼ 94.4% with respect to experimental data. Finite element method, combined with dielectric properties extracted from the Brendel-Bormann function model, was utilized, the latter being chosen from a comparative study on four available models.
A new technique of x-ray focusing crystal spectrometers' calibration is the desired result. For this purpose the spectrometer is designed to register radiated copper Kα and Kβ lines by using a flat α-quartz crystal. This experiment uses pre-breakdown x-ray emissions in low vacuum of about 2.5-3 mbar. At this pressure the pinch will not form so the plasma will not radiate. The anode material is copper and the capacity of the capacitor bank is 22.6 nF. This experiment designed and mounted a repetitive triggering system to save the operator time making hundreds of shots. This emission amount is good for calibration and geometrical adjustment of an optical crystal x-ray focusing spectrometer.
A method for improving the thermoluminescence (TL) yield of silica-based optical fibres is demonstrated. Using silica obtained from a single manufacturer, three forms of pure (undoped) fibre (capillary-, flat-, and photonic crystal fibre (PCF)) and two forms of Ge-doped fibre (capillary- and flat-fibre) were fabricated. The pure fibre samples were exposed to 6 and 21MeV electrons, the doped fibres to 6MV photons. The consistent observation of large TL yield enhancement is strongly suggestive of surface-strain defects generation. For 6MeV irradiations of flat-fibre and PCF, respective TL yields per unit mass of about 12.0 and 17.5 times that of the undoped capillary-fibre have been observed. Similarly, by making a Ge-doped capillary-fibre into flat-fibre, the TL response is found to increase by some 6.0 times. Thus, in addition to TL from the presence of a dopant, the increase in fused surface areas of flat-fibres and PCF is seen to be a further important source of TL. The glow-curves of the undoped fibres have been analysed by computational deconvolution. Trap centre energies have been estimated and compared for the various fibre samples. Two trap centre types observed in capillary-fibre are also observed in flat-fibre and PCF. An additional trap centre in flat-fibre and one further trap centre in PCF are observed when compared to capillary fibre. These elevated-energy trap centres are linked with strain-generated defects in the collapsed regions of the flat fibre and PCF.
With interest in the potential of optical fibres as the basis of next-generation thermoluminescence dosimeters (TLDs), the development of suitable forms of material and their fabrication has become a fast-growing endeavour. Present study focuses on three types of Ge-doped optical fibres with different structural arrangements and/or shapes, namely conventional cylindrical fibre, capillary fibre, and flat fibre, all fabricated using the same optical fibre preform. For doses from 0.5 to 8 Gy, obtained at electron and photon energies, standard thermoluminescence (TL) characteristics of the optical fibres have been the subject of detailed investigation. The results show that in collapsing the capillary fibre into a flat shape, the TL yield is increased by a factor of 5.5, the yield being also some 3.2 times greater than that of the conventional cylindrical fibre fabricated from the same perform. This suggests a means of production of suitably sensitive TLD for in-vivo dosimeter applications. Addressing the associated defects generating luminescence from each of the optical fibres, the study encompasses analysis of the TL glow curves, with computerized glow curve deconvolution (CGCD) and 2(nd) order kinetics.
Surface plasmon resonance (SPR) sensing is recently emerging as a valuable technique for measuring the binding constants, association and dissociation rate constants, and stoichimetry for a binding interaction kinetics in a number of emerging biological areas. This technique can be applied to the study of immune system diseases in order to contribute to improved understanding and evaluation of binding parameters for a variety of interactions between antigens and antibodies biochemically and clinically. Since the binding constants determination of an anti-protein dengue antibody (Ab) to a protein dengue antigen (Ag) is mostly complicated, the SPR technique aids a determination of binding parameters directly for a variety of particular dengue Ag_Ab interactions in the real-time. The study highlights the doctrine of real-time dengue Ag_Ab interaction kinetics as well as to determine the binding parameters that is performed with SPR technique. In addition, this article presents a precise prediction as a reference curve for determination of dengue sample concentration.