The aim of this study was to evaluate the interaction between packaging parameters (transmission of light and oxygen) and storage temperatures (4, 20, 40 °C) on nutrient retention of Spinach (Spinacia oleracea) juice, spray-dried in the absence of an added encapsulant. β-Carotene was more susceptible to degradation compared with lutein and α-tocopherol. Under our experimental conditions, it was observed that excluding low fluorescent light intensity and air by vacuum packaging at 20 °C did not seem to improve nutrient retention loss over time (p > 0.05). The rate of β-carotene, lutein and α-tocopherol loss displayed first order reaction kinetic with low activation energy of 0.665, 2.650 and 13.893 kJ/mol for vacuum, and 1.089, 4.923 and 14.142 kJ/mol for non-vacuum, respectively. The reaction kinetics and half-life for β-carotene, lutein and α-tocopherol at 4 °C and non-vacuumed were 2.2 × 10-2, 1.2 × 10-2, and 0.8 × 10-2 day-1, and 32.08, 58.25 and 85.37 day, respectively.
A study of the literature indicates that chloroplasts synthesise a range of molecules, many of which have nutritional value for humans, but the nutritional credentials of chloroplasts recovered from plant cells are not established. Chloroplast-rich-fractions (CRFs) were prepared from green plant species and the macro- and micro-nutrient composition compared with the whole leaf materials (WLMs). The results indicated that, on a dry weight basis, CRF material from a range of green biomass was enriched in lipids and proteins, and in a range of micronutrients compared with the WLM. Vitamins E, pro-vitamin A, and lutein were all greater in CRF preparations. Of the minerals, iron was most notably concentrated in CRF. Spinach CRFs possessed the highest α-tocopherol [62 mg 100 g-1, dry weight (DW)], β-carotene (336 mg 100 g-1 DW) and lutein (341 mg 100 g-1 DW) contents, whilst grass CRFs had the highest concentration of alpha-linolenic acid (ALA) (69.5 mg g-1). The higher concentrations of α-tocopherol, β-carotene, lutein, ALA and trace minerals (Fe and Mn) in CRFs suggested their potential use as concentrated ingredients in food formulations deficient in these nutrients.
Postharvest, pea vine field residue (haulm) was steam-sterilised and then juiced; a chloroplast-rich fraction (CRF) was recovered from the juice by centrifugation. The stability of selected nutrients (β-carotene, lutein, and α-tocopherol) in the freeze-dried CRF material was measured over 84 days; the impact of temperature (-20 °C, 4 °C, 25 °C and 40 °C), light and air on nutrient stability was established. All three nutrients were stable at -20 °C and 4 °C in the presence or absence of air; this stability was lost at higher temperatures in the presence of air. The extent and rate of nutrient breakdown significantly increased when the CRF samples were exposed to light. β-Carotene appeared to be more susceptible to degradation than lutein and α-tocopherol at 40 °C in the presence of air, but when CRF was exposed to light all three nutrients measured were significantly broken down during storage at 25 °C or 40 °C, whether exposed to air or not.