Displaying all 2 publications

Abstract:
Sort:
  1. Yogeshwaran A, Gayathiri K, Muralisankar T, Gayathri V, Monica JI, Rajaram R, et al.
    Mar Pollut Bull, 2020 Sep;158:111443.
    PMID: 32753221 DOI: 10.1016/j.marpolbul.2020.111443
    The present study was performed to analyze the bioaccumulation of heavy metals, biochemical constituents, antioxidants, and metabolic enzymes in the crab Scylla serrata from different regions of Tuticorin, Southeast Coast of India. The study area consists of Threspuram and Harbour Beach which were polluted environments due to the discharge of industrial effluents and domestic sewage into them. Punnakayal, which is a low-polluted environment where the in-situ culture of S. serrata is carried out by local fish farmers, was selected as well. The results revealed that the level of heavy metals, biochemical constituents, antioxidants, and metabolic enzymes were significantly high in the crabs collected from Threspuram and Harbour Beach compared to the crabs collected from Punnakayal. This study indicates that crabs from polluted environments have significant heavy metals bioaccumulation which leads to elevated antioxidants and metabolic enzyme levels. This implies that the crabs are under oxidative and metabolic stress.
  2. Thangal SH, Nandhinipriya R, Vasuki C, Gayathri V, Anandhan K, Yogeshwaran A, et al.
    Chemosphere, 2023 Oct 17.
    PMID: 37858766 DOI: 10.1016/j.chemosphere.2023.140447
    Ocean acidification (OA) and heavy metals pollution in marine environments are potentially threatening marine life. The interactive effect of OA and heavy metals could be more vulnerable to marine organisms than individual exposures. In the current study, the effect of OA on the toxicity of cadmium (Cd) in the crab Scylla serrata was evaluated. Crab instars (0.07 cm length and 0.1 g weight) were subjected to pH 8.2, 7.8, 7.6, 7.4, 7.2, and 7.0 with and without 0.01 mg l-1 of Cd for 60 days. We notice a significant decrease in growth, molting, protein, carbohydrate, amino acid, lipid, alkaline phosphatase, and haemocytes of crabs under OA + Cd compared to OA treatment. In contrast, the growth, protein, amino acid, and haemocyte levels were significantly affected by OA, Cd, and its interactions (OA + Cd). However, superoxide dismutase, catalase, lipid peroxidation, glutamic oxaloacetate transaminase, glutamic pyruvate transaminase, and accumulation of Cd in crabs were considerably elevated in OA + Cd treatments compared to OA alone treatments. The present investigation showed that the effect of Cd toxicity might be raised under OA on S. serrata. Our study demonstrated that ocean acidification significantly affects the biological indices and oxidative stress responses of S. serrata exposed to Cd toxicity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links